This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090519 #13 Jul 31 2023 10:08:08 %S A090519 2,13,23,13,89,19,7,47,67,13,17,157,17,313,107,409,151,773,149,409, %T A090519 109,13,29,211,7,19,149,431,859,43,109,167,277,13,2293,173,907,107, %U A090519 1087,617,449,1013,73,1249,743,109,233,499,191,479 %N A090519 Smallest prime p such that floor((10^n)/p) is prime, or 0 if no such number exists. %C A090519 Conjecture: No term is zero. Subsidiary Sequence: Number of primes in floor((10^n)/p), p is a prime. a(1) = 3, the primes are 10/2, floor(10/3) and 10/5. %H A090519 Robert Israel, <a href="/A090519/b090519.txt">Table of n, a(n) for n = 1..1800</a> %e A090519 a(5) = 89, as floor((10^5)/89) = 1123 is the largest such prime. %p A090519 f:= proc(n) local t,p; %p A090519 t:= 10^n; %p A090519 p:= 1; %p A090519 while p < t/2 do %p A090519 p:= nextprime(p); %p A090519 if isprime(floor(t/p)) then return p fi %p A090519 od; %p A090519 0 %p A090519 end proc: %p A090519 map(f, [$1..50]); # _Robert Israel_, Jul 30 2023 %t A090519 <<NumberTheory`; Do[k = 2; While[ !PrimeQ[Floor[10^n / k]], k = NextPrime[k]]; Print[k], {n, 1, 50}] (* _Ryan Propper_, Jun 19 2005 *) %Y A090519 Cf. A090517, A090518, A090520. %K A090519 base,nonn %O A090519 1,1 %A A090519 _Amarnath Murthy_, Dec 07 2003 %E A090519 Corrected and extended by _Ryan Propper_, Jun 19 2005