cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091298 Triangle read by rows: T(n,k) is the number of plane partitions of n containing exactly k parts.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 3, 5, 1, 4, 7, 5, 7, 1, 6, 10, 13, 7, 11, 1, 6, 14, 20, 19, 11, 15, 1, 8, 18, 33, 32, 31, 15, 22, 1, 8, 25, 43, 56, 54, 43, 22, 30, 1, 10, 29, 66, 81, 99, 78, 64, 30, 42, 1, 10, 37, 83, 126, 150, 148, 118, 88, 42, 56, 1, 12, 44, 114, 174, 246, 235, 230, 166, 124, 56, 77
Offset: 1

Views

Author

Wouter Meeussen, Feb 24 2004

Keywords

Comments

First column is 1, representing the single-part {{n}}, last column is P(n), since the all-ones plane partitions form the Ferrers-Young plots of the (linear) partitions of n.
A plane partition of n is a two-dimensional table (or matrix) with nonnegative elements summing up to n, and nonincreasing rows and columns. (Zero rows and columns are ignored.) - M. F. Hasler, Sep 22 2018

Examples

			This plane partition of n=7: {{3,1,1},{2}} contains 4 parts: 3,1,1,2.
Triangle T(n,k) begins:
  1;
  1,  2;
  1,  2,  3;
  1,  4,  3,  5;
  1,  4,  7,  5,  7;
  1,  6, 10, 13,  7, 11;
  1,  6, 14, 20, 19, 11, 15;
  1,  8, 18, 33, 32, 31, 15, 22;
  1,  8, 25, 43, 56, 54, 43, 22, 30;
  1, 10, 29, 66, 81, 99, 78, 64, 30, 42;
  ...
		

Crossrefs

Row sums give A000219.
Column 1 is A000012. Column 2 is A052928. Diagonal and subdiagonal are A000041.

Programs

  • Mathematica
    (* see A089924 for "planepartition" *) Table[Length /@ Split[Sort[Length /@ Flatten /@ planepartitions[n]]], {n, 16}]
  • PARI
    A091298(n,k)=sum(i=1,#n=PlanePartitions(n),sum(j=1,#n[i],#n[i][j])==k)
    PlanePartitions(n,L=0,PP=List())={ n<2&&return([if(n,[[1]],[])]); for(N=1,n, my(P=apply(Vecrev, if(L, select(p->vecmin(L-Vecrev(p,#L))>=0, partitions(N,L[1],#L)), partitions(N)))); if(NM. F. Hasler, Sep 24 2018

A090984 a(n) is the number of pairs (x,y) where x is plane partition of n+1 and y is a plane partition of n and x covers y.

Original entry on oeis.org

1, 3, 9, 21, 48, 102, 213, 421, 819, 1542, 2854, 5172, 9240, 16233, 28182, 48288, 81862, 137295, 228153, 375658, 613554, 994155, 1599309, 2554932, 4055406, 6397160, 10032907, 15647277, 24275455, 37471066, 57562533, 88018488, 133996590, 203126712, 306671525, 461184246, 690935892, 1031379271
Offset: 0

Views

Author

Wouter Meeussen, Feb 28 2004

Keywords

Comments

x = (x_1_1 .. x_1_u1)(x_2_1 .. x_2_u2) .. (x_k_1 .. x_k_uk) y = (y_1_1 .. y_1_v1)(y_2_1 .. y-2_v2) .. (y_m_1 .. y_m_vm) x covers y iff ui >= vi, k >= m, x_i_j >= y_i_j, or, the 3-dimensional Ferrers plot of y falls within that of x.
The analog for ordinary partitions and 2D-Ferrers plots gives A000070.

Crossrefs

Programs

  • Mathematica
    coversplaneQ[parent_?planepartitionQ, child_?planepartitionQ] := Block[{dif=Length[parent]-Length[child], p=Length/@ parent, c=PadRight[Length/@ child, Length[parent], 0]}, And[dif>=0, Min[p-c]>=0, Min[parent-MapThread[PadRight[ #1, #2, 0]&, { PadRight[child, Length[parent], {{0}}], p}]]>=0]]; Table[Count[Outer[coversplaneQ, planepartitions[k], planepartitions[k-1], 1], True, -1], {k, 12}]

A092288 Triangle read by rows: T(n,k) = count of parts k in all plane partitions of n.

Original entry on oeis.org

1, 4, 1, 11, 2, 1, 28, 7, 2, 1, 62, 15, 5, 2, 1, 137, 38, 13, 5, 2, 1, 278, 76, 28, 11, 5, 2, 1, 561, 164, 60, 26, 11, 5, 2, 1, 1080, 316, 124, 52, 24, 11, 5, 2, 1, 2051, 623, 244, 108, 50, 24, 11, 5, 2, 1, 3778, 1156, 469, 208, 100, 48, 24, 11, 5, 2, 1, 6885, 2160, 886, 404, 194, 98, 48, 24, 11, 5, 2, 1
Offset: 1

Views

Author

Wouter Meeussen, Feb 01 2004

Keywords

Comments

For large n the rows end in A091360 = partial sums of A000219 (count of plane partitions).

Examples

			Triangle begins:
    1;
    4,  1;
   11,  2,  1;
   28,  7,  2,  1;
   62, 15,  5,  2,  1;
  137, 38, 13,  5,  2,  1;
  ...
		

Crossrefs

Column k=1 gives A090539.
Row sums give A319648.
T(2n+1,n+1) gives A091360.

Programs

  • Mathematica
    Table[Length /@ Split[Sort[Flatten[planepartitions[k]]]], {k, 12}]
  • PARI
    A092288_row(n, c=vector(n), m, k)={for(i=1, #n=PlanePartitions(n), for(j=1,#m=n[i], for(i=1,#k=m[j], c[k[i]]++))); c} \\ See A091298 for PlanePartitions(). See below for more efficient code.
    M92288=[]; A092288(n,k,L=0)={n>1||return(if(L,[n,n==k],n==k)); if(#L&& #L<3, my(j=setsearch(M92288,[[n,k,L],[]],1)); j<=#M92288&& M92288[j][1]==[n,k,L]&& return(M92288[j][2])); my(c(p)=sum(i=1,#p,p[i]==k),S=[0,0],t); for(m=1,n,my(P=if(L,select(p->vecmin(L-Vecrev(p,#L))>=0, partitions(m,L[1],#L)), partitions(m))); if(mA092288(n-m,k,Vecrev(P[i])); S+=[t[1], t[1]*c(P[i])+t[2]], S+=[#P,vecsum(apply(c,P))])); if(L, #L<3&& M92288= setunion(M92288,[[[n,k,L],S]]);S,S[2])} \\ M. F. Hasler, Sep 26 2018
Showing 1-3 of 3 results.