cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090590 (1,1) entry of powers of the orthogonal design shown below.

This page as a plain text file.
%I A090590 #32 Sep 08 2022 08:45:12
%S A090590 1,-6,-20,8,176,288,-832,-3968,-1280,29184,68608,-96256,-741376,
%T A090590 -712704,4505600,14712832,-6619136,-130940928,-208928768,629669888,
%U A090590 2930769920,824180736,-21797797888,-50189041664,74004299776,549520932864
%N A090590 (1,1) entry of powers of the orthogonal design shown below.
%C A090590 +1 +1 +1 +1 +1 +1 +1 +1
%C A090590 -1 +1 +1 -1 +1 -1 -1 +1
%C A090590 -1 -1 +1 +1 +1 +1 -1 -1
%C A090590 -1 +1 -1 +1 +1 -1 +1 -1
%C A090590 -1 -1 -1 -1 +1 +1 +1 +1
%C A090590 -1 +1 -1 +1 -1 +1 -1 +1
%C A090590 -1 +1 +1 -1 -1 +1 +1 -1
%C A090590 -1 -1 +1 +1 -1 -1 +1 +1
%C A090590 Also real part of (1 +- i*sqrt(7))^n. - _Bruno Berselli_, Jun 24-25 2011
%H A090590 Vincenzo Librandi, <a href="/A090590/b090590.txt">Table of n, a(n) for n = 1..202</a>
%H A090590 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-8).
%F A090590 G.f.: x*(1-8*x)/(1-2*x+8*x^2). - _T. D. Noe_, Dec 11 2006
%F A090590 From _Bruno Berselli_, Jun 24-25 2011: (Start)
%F A090590 a(n) = (1/2)*((1+i*sqrt(7))^n + (1-i*sqrt(7))^n), where i=sqrt(-1).
%F A090590 a(n) = cos(n*arctan(sqrt(7)))*sqrt(8)^n.
%F A090590 a(n) = 2*a(n-1) - 8*a(n-2) (n > 2). (End)
%p A090590 a := proc(n) option remember: if(n=1)then return 1:elif(n=2)then return -6:fi: return 2*a(n-1)-8*a(n-2): end: seq(a(n),n=1..26); # _Nathaniel Johnston_, Jun 25 2011
%t A090590 LinearRecurrence[{2,-8},{1,-6},30] (* _Harvey P. Dale_, Mar 30 2019 *)
%o A090590 (Magma) m:=27; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-8*x)/(1-2*x+8*x^2))); // _Bruno Berselli_, Jun 24-25 2011
%o A090590 (Maxima) makelist(expand(((1+sqrt(-1)*sqrt(7))^n+(1-sqrt(-1)*sqrt(7))^n)/2),n,1,26); /* _Bruno Berselli_, Jun 24-25 2011 */
%o A090590 (PARI) a=vector(26); a[1]=1; a[2]=-6; for(i=3, #a, a[i]=2*a[i-1]-8*a[i-2]); a \\ _Bruno Berselli_, Jun 24-25 2011
%Y A090590 Cf. A087621, A090591.
%K A090590 sign,easy
%O A090590 1,2
%A A090590 _Simone Severini_, Dec 04 2003
%E A090590 Corrected by _T. D. Noe_, Dec 11 2006
%E A090590 More terms from _Bruno Berselli_, Jun 24 2011