cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090592 (1,1) entry of powers of the orthogonal design shown below.

This page as a plain text file.
%I A090592 #20 Sep 08 2022 08:45:12
%S A090592 1,-5,-17,1,121,235,-377,-2399,-2159,12475,40063,-7199,-294839,
%T A090592 -539285,985303,5745601,4594081,-31031045,-94220657,28776001,
%U A090592 717096601,1232761195,-2554153817,-13737635999,-9596195279,76971061435,221115489823,-96566450399,-1740941329559
%N A090592 (1,1) entry of powers of the orthogonal design shown below.
%C A090592    1  0  1  1  1  1  1  1
%C A090592    0  1  1 -1  1 -1 -1  1
%C A090592   -1 -1  1  0  1  1 -1 -1
%C A090592   -1  1  0  1  1 -1  1 -1
%C A090592   -1 -1 -1 -1  1  0  1  1
%C A090592   -1  1 -1  1  0  1 -1  1
%C A090592   -1  1  1 -1 -1  1  1  0
%C A090592   -1 -1  1  1 -1 -1  0  1
%H A090592 G. C. Greubel, <a href="/A090592/b090592.txt">Table of n, a(n) for n = 1..1000</a>
%H A090592 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-7).
%F A090592 a(1) = 1, a(2) = -5, a(n) = 2*a(n-1) - 7*a(n-2). - _Philippe Deléham_, Mar 05 2012
%F A090592 G.f.: x*(1-7*x)/(1-2*x+7*x^2). - _Philippe Deléham_, Mar 05 2012
%F A090592 G.f.: G(0)/(2*x) -1/x, where G(k)= 1 + 1/(1 - x*(6*k+1)/(x*(6*k+7) + 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 03 2013
%t A090592 Rest[CoefficientList[Series[x*(1-7*x)/(1-2*x+7*x^2), {x, 0, 30}], x]] (* _G. C. Greubel_, Oct 22 2018 *)
%o A090592 (PARI) x='x+O('x^30); Vec(x*(1-7*x)/(1-2*x+7*x^2)) \\ _G. C. Greubel_, Oct 22 2018
%o A090592 (Magma) I:=[1,-5]; [n le 2 select I[n] else 2*Self(n-1) - 7*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Oct 22 2018
%o A090592 (GAP) a:=[1,-5];; for n in [3..30] do a[n]:=2*a[n-1]-7*a[n-2]; od; a; # _Muniru A Asiru_, Oct 23 2018
%Y A090592 Cf. A089181.
%K A090592 sign,easy
%O A090592 1,2
%A A090592 _Simone Severini_, Dec 08 2003
%E A090592 Corrected and extended by _Philippe Deléham_, Mar 05 2012