This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090630 #27 Feb 16 2025 08:32:52 %S A090630 1,1,1,1,8,8,144,144,576,5184,518400,518400,2073600,2073600,101606400, %T A090630 914457600,14631321600,14631321600,526727577600,526727577600, %U A090630 52672757760000,221225582592000,6373403688960000,6373403688960000,917770131210240000,22944253280256000000,3877578804363264000000 %N A090630 Greatest divisor d of n! such that d=m^k with k>1. %C A090630 a(n) is a square for all n except n = 4, 5 and 21 (Wilke, 1981). - _Amiram Eldar_, Jun 09 2022 %H A090630 Charles R Greathouse IV, <a href="/A090630/b090630.txt">Table of n, a(n) for n = 0..500</a> %H A090630 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectPower.html">Perfect Powers</a>. %H A090630 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Factorial.html">Factorial</a>. %H A090630 Kenneth M. Wilke, <a href="http://www.pme-math.org/journal/issues/PMEJ.Vol.7.No.4.pdf">Problem 493</a>, Pi Mu Epsilon Journal, Vol. 7, No. 4 (1981), p. 265; <a href="https://www.jstor.org/stable/24337449">alternative link</a>. %H A090630 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>. %F A090630 a(n)= n!/A251753(n). - _Robert G. Wilson v_, Dec 08 2014 %p A090630 f:= proc(n) %p A090630 local F, k, d,r,s; %p A090630 F:= ifactors(n!)[2]; %p A090630 r:= 1; %p A090630 for k from 2 to F[1][2] do %p A090630 r:= max(r, mul(f[1]^(k*floor(f[2]/k)),f=F)) %p A090630 od: %p A090630 r %p A090630 end proc: %p A090630 1,1,seq(f(n), n=2..100); # _Robert Israel_, Dec 08 2014 %t A090630 IsPower[n_] := If[n==1, True, GCD@@(Transpose[FactorInteger[n]][[2]])>1]; Table[Select[Divisors[n! ], IsPower][[ -1]], {n, 0, 25}] %o A090630 (PARI) a(n)=my(f=factor(n!),m=1); for(i=2,if(#f~,f[1,2]), m=max(factorback(concat(Mat(f[,1]), f[,2]\i*i)),m)); m \\ _Charles R Greathouse IV_, Dec 09 2014 %Y A090630 Cf. A011776, A060818, A060828, A251753. %K A090630 nonn %O A090630 0,5 %A A090630 _Reinhard Zumkeller_, Dec 13 2003 %E A090630 More terms from _T. D. Noe_, Oct 04 2004