cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090667 Number of compositions of 3n with each part less than or equal to n.

This page as a plain text file.
%I A090667 #21 May 04 2024 00:44:43
%S A090667 1,1,13,149,1490,13624,117920,987568,8111200,65866496,531372800,
%T A090667 4270866688,34254920192,274425014272,2197077311488,17583865032704,
%U A090667 140702055981056,1125749585477632,9006563605151744,72054913990721536,576449482336632832,4611638739487686656
%N A090667 Number of compositions of 3n with each part less than or equal to n.
%H A090667 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (22,-188,808,-1856,2176,-1024).
%F A090667 a(n) = 2^(3n-1)-(2n+1)*2^(2n-2)+(n+2)*(n-1)*2^(n-4), n>0.
%F A090667 G.f.: (896*x^6-1968*x^5+1704*x^4-757*x^3+179*x^2-21*x+1) / ((2*x-1)^3*(4*x-1)^2*(8*x-1)). - _Colin Barker_, May 15 2013
%e A090667 a(2)=13 since there is one composition of 6 of the form 1+1+1+1+1+1, five of the form 2+1+1+1+1, six of the form 2+2+1+1 and one of the form 2+2+2 and 1+5+6+1=13.
%p A090667 A090667:=n->`if`(n=0,1,2^(3*n-1)-(2*n+1)*2^(2*n-2)+(n+2)*(n-1)*2^(n-4)); seq(A090667(n), n=0..50); # _Wesley Ivan Hurt_, Nov 14 2013
%t A090667 LinearRecurrence[{22,-188,808,-1856,2176,-1024},{1,1,13,149,1490,13624,117920},30] (* _Harvey P. Dale_, May 04 2024 *)
%Y A090667 Cf. A008464.
%K A090667 nonn,easy
%O A090667 0,3
%A A090667 _Henry Bottomley_, Dec 16 2003
%E A090667 More terms from _Colin Barker_, May 15 2013