A090688 First occurrence of primes in the progression k*x^2-1.
3, 7, 2, 3, 19, 5, 251, 7, 89, 43, 11, 467, 13, 59, 67, 17, 683, 19, 83, 197, 367, 23, 103, 107, 251, 463, 29, 4463, 31, 131, 1223, 139, 11987, 37, 7643, 359, 163, 41, 13931, 43, 179, 33533, 751, 47, 199, 5099, 467, 211, 53, 1979, 223, 227, 521, 23599, 59, 8783, 61
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(k) local x; if issqr(k) then return NULL fi; for x from 1 do if isprime(k*x^2-1) then return k*x^2-1 fi od end proc: f(1):= 3: f(4):= 3: map(f, [$1..300]); # Robert Israel, Nov 22 2020
Formula
If p>=5 is prime, a(p+3-floor(sqrt(p)))=p. - Robert Israel, Nov 22 2020
Comments