This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090711 #23 Nov 02 2023 23:41:37 %S A090711 2,3,5,7,31,47,67,73,97,163,223,227,229,271,311,317,331,397,421,443, %T A090711 449,557,683,727,733,773,883,953,977,991,997,1063,1109,1129,1367,1373, %U A090711 1433,1483,1607,1613,1637,1657,1697,1723,1783,1871,1873,1879,2027,2203,2269 %N A090711 Primes whose base-11 expansion is a (valid) decimal expansion of a prime. %C A090711 See A091924 for the sequence whose definition works "the other way round": Actually, the base-11 representation of the terms of this sequence here. - _M. F. Hasler_, Jan 03 2014 %H A090711 Robert Price, <a href="/A090711/b090711.txt">Table of n, a(n) for n = 1..19838</a> %e A090711 The prime p = 31 is written 29 in base 11, and 29 read in base 10 is again a prime. So 31 is a term. %t A090711 b11pQ[n_]:=Module[{d=IntegerDigits[n,11]},Max[d]<10&&PrimeQ[FromDigits[ d]]]; Select[Prime[Range[400]],b11pQ] (* _Harvey P. Dale_, Apr 17 2018 *) %o A090711 (PARI) is(p,b=10,c=11)=vecmax(d=digits(p,c))<b&&isprime(vector(#d,i,b^(#d-i))*d~)&&isprime(p) \\ _M. F. Hasler_, Jan 05 2014 %Y A090711 Cf. A090712. %K A090711 base,nonn %O A090711 1,1 %A A090711 _Cino Hilliard_, Jan 18 2004 %E A090711 Edited by _N. J. A. Sloane_, Feb 07 2007, and by _M. F. Hasler_, Jan 03 2014