This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090739 #48 Jun 28 2025 10:24:34 %S A090739 3,4,3,5,3,4,3,6,3,4,3,5,3,4,3,7,3,4,3,5,3,4,3,6,3,4,3,5,3,4,3,8,3,4, %T A090739 3,5,3,4,3,6,3,4,3,5,3,4,3,7,3,4,3,5,3,4,3,6,3,4,3,5,3,4,3,9,3,4,3,5, %U A090739 3,4,3,6,3,4,3,5,3,4,3,7,3,4,3,5,3,4,3 %N A090739 Exponent of 2 in 9^n - 1. %C A090739 The exponent of 2 in the factorization of Fibonacci(6n). - _T. D. Noe_, Mar 14 2014 %C A090739 Records of 3, 4, 5, 6, 7, 8,.. occur at n= 1, 2, 4, 8, 16, 32,... - _R. J. Mathar_, Jun 28 2025 %H A090739 T. D. Noe, <a href="/A090739/b090739.txt">Table of n, a(n) for n = 1..1000</a> %H A090739 T. Lengyel, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/33-3/lengyel.pdf">The order of the Fibonacci and Lucas numbers</a>, Fib. Quart. 33 (1995), 234-239. %F A090739 a(n) = A007814(n) + 3. %F A090739 a((2*n-1)*2^p) = p + 3, p >= 0. - _Johannes W. Meijer_, Feb 08 2013 %F A090739 a(n) = log_2(A006519(9^n - 1)). - _Alonso del Arte_, Feb 08 2013 %F A090739 a(n) = 2*tau(4*n)/(tau(4*n) - tau(n)), where tau(n) = A000005(n). - _Peter Bala_, Jan 06 2021 %F A090739 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4. - _Amiram Eldar_, Nov 28 2022 %e A090739 For n = 2, we see that -1 + 3^4 = 80 = 2^4 * 5 so a(2) = 4. %e A090739 For n = 3, we see that -1 + 3^6 = 728 = 2^3 * 7 * 13, so a(3) = 3. %p A090739 A090739 := proc(n) %p A090739 padic[ordp](9^n-1,2) ; %p A090739 end proc: %p A090739 seq(A090739(n),n=1..80) ; # _R. J. Mathar_, Jun 28 2025 %t A090739 Table[Part[Flatten[FactorInteger[ -1+3^(2*n)]], 2], {n, 1, 70}] %t A090739 Table[IntegerExponent[Fibonacci[n], 2], {n, 6, 600, 6}] (* _T. D. Noe_, Mar 14 2014 *) %o A090739 (PARI) a(n)=valuation(n,2)+3 \\ _Charles R Greathouse IV_, Mar 14 2014 %o A090739 (Python) %o A090739 def A090739(n): return (~n&n-1).bit_length()+3 # _Chai Wah Wu_, Jul 11 2022 %Y A090739 Cf. A024101, A069895, A091512, A088660, A090740, A220466. %Y A090739 Cf. A000005, A006519, A120738 (partial sums). %Y A090739 Appears in A161737. %K A090739 nonn,easy %O A090739 1,1 %A A090739 _Labos Elemer_ and _Ralf Stephan_, Jan 19 2004 %E A090739 More terms from _T. D. Noe_, Mar 14 2014