cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090741 Maximum number of transversals in a Latin square of order n.

This page as a plain text file.
%I A090741 #48 Feb 28 2024 13:21:29
%S A090741 1,0,3,8,15,32,133,384,2241
%N A090741 Maximum number of transversals in a Latin square of order n.
%C A090741 a(10) >= 5504 from Parker.
%C A090741 a(n) >= the number of transversals in a cyclic Latin square of the same order which for odd n is given by A006717((n-1)/2). - _Eduard I. Vatutin_, Nov 04 2020
%D A090741 J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics. 1992. Vol. 139. pp. 43-49.
%D A090741 E. T. Parker, Computer investigations of orthogonal Latin squares of order 10, Proc. Sympos. Appl. Math., volume 15 (1963), 73-81.
%H A090741 D. Bedford, <a href="http://dx.doi.org/10.1016/S0195-6698(13)80096-0">Transversals in the Cayley tables of the non-cyclic groups of order 8</a>, European Journal of Combinatorics, volume 12 (1991), 455-458.
%H A090741 N. J. Cavenagh and I. M. Wanless, <a href="http://dx.doi.org/10.1016/j.dam.2009.09.006">On the number of transversals in Cayley tables of cyclic groups</a>, Disc. Appl. Math. 158 (2010), 136-146.
%H A090741 B. D. McKay, J. C. McLeod and I. M. Wanless, <a href="http://dx.doi.org/10.1007/s10623-006-0012-8">The number of transversals in a Latin square</a>, Des. Codes Cryptogr., 40, (2006) 269-284.
%H A090741 V. N. Potapov, <a href="https://arxiv.org/abs/1506.01577">On the number of transversals in Latin squares</a>, arxiv:1506.01577 [math.CO], 2015.
%H A090741 Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, Maxim Manzuk, Alexander Albertian, Ilya Kurochkin, Alexander Kripachev, and Alexey Pykhtin, <a href="https://doi.org/10.1007/978-3-031-49435-2_4">Diagonalization and Canonization of Latin Squares</a>, Supercomputing, Russian Supercomputing Days (RuSCDays 2023) Rev. Selected Papers Part II, LCNS Vol. 14389, Springer, Cham, 48-61.
%H A090741 Ian M. Wanless, <a href="https://doi.org/10.37236/1629">A Generalization of Transversals for Latin Squares</a>, Electronic Journal of Combinatorics, volume 9, number 1 (2002), R12.
%H A090741 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>
%F A090741 a(n) is asymptotically in between 3.2^n and 0.62^n n!. [McKay, McLeod, Wanless], [Cavenagh, Wanless]. - _Ian Wanless_, Jul 30 2010
%e A090741 a(1), a(3), a(5), a(7) are from the group tables for Z_1, Z_3, Z_5 and Z_7 (see sequence A006717); a(4) and a(8) are from Z_2 x Z_2 and the non-cyclic groups of order 8 (see Bedford).
%e A090741 a(9) = 2241 from Z_3 x Z_3.
%Y A090741 Cf. A006717, A091325.
%K A090741 hard,more,nonn
%O A090741 1,3
%A A090741 _Richard Bean_, Feb 03 2004
%E A090741 a(9) = 2241 from _Brendan McKay_ and _Ian Wanless_, May 23 2004