This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090783 #15 Aug 15 2018 22:25:47 %S A090783 1848,6888,14280,16008,19152,36120,112728,116832,129480,139080,176520, %T A090783 190632,190968,199752,216840,236208,252120,274848,303960,314160, %U A090783 340368,363720,435792,458280,503160,513240,686160,688680,698880,712680,721560 %N A090783 a(n) can be expressed as the difference of the squares of consecutive primes in just three distinct ways. %H A090783 Giovanni Resta, <a href="/A090783/b090783.txt">Table of n, a(n) for n = 1..10000</a> (first 3091 terms from Robert Israel) %e A090783 1848 = 463^2 - 461^2 = 233^2 - 229^2 = 157^2 - 151^2. %p A090783 N:= 10^6: # to get all terms <= N %p A090783 V:= Vector(N/4): %p A090783 p:= 3: %p A090783 while p < N/2 do %p A090783 q:= p; %p A090783 p:= nextprime(p); %p A090783 r:= (p^2-q^2)/4; %p A090783 if r <= N/4 then %p A090783 V[r]:= V[r]+1 %p A090783 fi %p A090783 od: %p A090783 map(`*`,select(t -> V[t]=3, [$1..N/4]),4); # _Robert Israel_, Aug 13 2018 %o A090783 (PARI) is(n) = my(i=0, v=[]); forprime(p=5, n, v=[precprime(p-1), p]; if(v[2]^2-v[1]^2==n, i++)); i==3 \\ _Felix Fröhlich_, Aug 13 2018 %Y A090783 Cf. A078667, A090784, A090785, A091878. %K A090783 nonn %O A090783 1,1 %A A090783 _Ray G. Opao_, Feb 08 2004 %E A090783 More terms from _Ray Chandler_, Feb 11 2004