This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090790 #16 Jun 26 2017 23:04:10 %S A090790 30,42,56,66,22,20,128,60,82,162,98,82,18 %N A090790 Numbers r arising in A090791. %C A090790 These values of r correspond to the first 13 irregular primes produced by a/b. %F A090790 Given a = numerator(Bernoulli(2*n)/(2*n)) and b = numerator(a/(2*n-r)) for integer r positive or negative, then n>0 n = p*k+(p+r)/2 if r is odd and n = p*k+r/2 if r is even where k = 1, 2.. For every irregular prime p there is an r such that n is minimum. %e A090790 Given a, b as defined above and p=37, r=30, 52 = pk+r/2 = 37*1 + 30/2 is the smallest number that for a<>b a/b = 37. %o A090790 (PARI) bern3(m,r) = { for(i=m,m, p=irprime(i); /* use the Somos script below to get irregular prime */ for(k=1,p, if(r%2,n=p*k+(p+r)/2,n=p*k+r/2); n2=n+n; a = numerator(bernfrac(n2)/(n2)); %o A090790 b = numerator(a/(n2-r)); v=a/b; if(a <> b && v==p,print(k","n","v);break) ) ) } /* A001067 */ %o A090790 (PARI) irprime(n) = { my(p); if(n<1, 0, p=irprime(n-1) + (n==1); while(p = nextprime(p+2), forstep(i=2, p-3, 2, if( numerator(bernfrac(i))%p == 0, break(2)))); p) }; /* compute irregular primes irprime from - _Michael Somos_, Feb 04 2004 */ %Y A090790 Cf. A090495, A090496, A090791. %K A090790 nonn,more %O A090790 1,1 %A A090790 _Cino Hilliard_, Feb 16 2004