cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090798 Irregular primes in the ratio numerator(Bernoulli(2*n)/(2*n)) / numerator(Bernoulli(2*n)/(2*n*(2*n-r))) when these numerators are different and n is a minimum for some integer r. Duplication indicates irregularity index > 1.

Original entry on oeis.org

37, 59, 67, 101, 103, 131, 149, 157, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 353, 379, 379, 389, 401, 409, 421, 433, 461, 463, 467, 467, 491, 491, 491, 523, 541, 547, 547, 557, 577, 587, 587, 593, 607, 613, 617, 617, 617, 619, 631, 631, 647
Offset: 1

Views

Author

Cino Hilliard, Feb 16 2004

Keywords

Comments

Only even values of r need to be tested.
See Table A.3, "Calculated irregular pairs of order 10 of primes below 1000," in B. C. Kellner.

Crossrefs

Programs

  • Mathematica
    f[p_] := Block[{c = 0, k = 1}, While[ 2k <= p - 3, If[ Mod[ Numerator@ BernoulliB[ 2k], p] == 0, c++]; k++]; c]; p = 5; lst = {}; While[p < 1001, AppendTo[lst, Table[p, {f@ p}]]; p = NextPrime@ p]; Flatten@ lst
  • PARI
    \ prestore some ireg primes in iprime[] bernmin(m) = { for(x=1,m, p=iprime[x]; forstep(r=2,p,2, n=r/2+p; n2=n+n; a = numerator(bernfrac(n2)/(n2)); \ A001067 b = numerator(a/(n2-r)); \ if(a <> b,print(r","n","a/b)) if(a <> b,print1(a/b",")) ) ) }

Formula

Given a = numerator(Bernoulli(2*n)/(2*n)) and b = numerator(a/(2*n-r)) for integer r positive or negative, then n>0 n = p + r/2 For every irregular prime p there is an r such that n is minimum.