This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090845 #9 Oct 06 2015 18:30:33 %S A090845 1,1,2,3,5,9,10,20,22,40,51,67,114,126,203,230,354,468,571,885,908, %T A090845 1486,1674,2250,3045,3586,5322,5418,8186,9560,12234,16341,17976,26970, %U A090845 27912,38435,46383,57024,76794,80805,116376,125205,165914,201580,232352 %N A090845 Let A denote the sequence; A is equal to the union of the self-convolutions A^2 and A^3, with terms in ascending order by size. %C A090845 The occurrences of the terms of A^3 in A is given by A090846. %C A090845 The self-convolution square equals A222082. %C A090845 The self-convolution cube equals A222083. %C A090845 Not equal to A262990. %H A090845 Paul D. Hanna, <a href="/A090845/b090845.txt">Table of n, a(n) for n = 0..10000</a> %e A090845 A={1,1,2,3,5,9,10,20,22,40,51,...} since A is the sorted union of: %e A090845 A^2={1,2,5,10,20,40,67,126,203,354,571,908,1486,2250,3586,...} and %e A090845 A^3={1,3,9,22,51,114,230,468,885,1674,3045,5418,9560,16341,...}. %o A090845 (PARI) {a(n)=local(A=[1,1]);for(i=1,#binary(3*n+1),A=vecsort(concat(Vec(Ser(A)^2),Vec(Ser(A)^3))));A[n+1]} %o A090845 for(n=0,60,print1(a(n),", ")) %Y A090845 Cf. A090846, A222082 (A^2), A222083 (A^3). %K A090845 nonn %O A090845 0,3 %A A090845 _Paul D. Hanna_, Dec 09 2003