cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A006581 a(n) = Sum_{k=1..n-1} (k AND n-k).

Original entry on oeis.org

1, 0, 4, 4, 5, 0, 12, 16, 21, 16, 24, 20, 17, 0, 32, 48, 65, 64, 84, 84, 85, 64, 92, 96, 101, 80, 88, 68, 49, 0, 80, 128, 177, 192, 244, 260, 277, 256, 316, 336, 357, 336, 360, 340, 321, 256, 336, 368, 401, 384, 420, 404, 389, 320, 364, 352, 341, 272, 264, 196
Offset: 2

Views

Author

Keywords

References

  • Marc LeBrun, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A090889(n) - A000292(n-2).
Antidiagonal sums of array A003985.

Programs

  • Mathematica
    Array[Sum[BitAnd[k, # - k], {k, # - 1}] &, 60, 2] (* Michael De Vlieger, Oct 27 2022 *)
  • Python
    def A006581(n): return (sum(k&n-k for k in range(1,n+1>>1))<<1)+(0 if n&1 else n>>1) # Chai Wah Wu, May 07 2023

Formula

G.f.: 1/(1-x)^2 * Sum_{k>=0} 2^k*t^2/(1+t)^2, t = x^2^k. - Ralf Stephan, Feb 12 2003
a(0) = a(1) = 0, a(2n) = 2*a(n-1) + 2*a(n) + n, a(2n+1) = 4*a(n).
a(n) = 2*(Sum_{k=1..floor((n-1)/2)} k AND n-k) + m where m = 0 if n is odd and n/2 otherwise. - Chai Wah Wu, May 07 2023
Showing 1-1 of 1 results.