This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090915 #22 Jul 05 2022 11:12:22 %S A090915 1,8,7,6,5,4,3,2,9,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,25,48, %T A090915 47,46,45,44,43,42,41,40,39,38,37,36,35,34,33,32,31,30,29,28,27,26,49, %U A090915 80,79,78,77,76,75,74,73,72,71,70,69,68,67,66,65,64,63,62,61,60,59,58 %N A090915 Permutation of natural numbers arising from a square spiral. %C A090915 Write out the natural numbers in a square counterclockwise spiral: %C A090915 . %C A090915 17--16--15--14--13 %C A090915 | | %C A090915 18 5---4---3 12 %C A090915 | | | | %C A090915 19 6 1---2 11 %C A090915 | | | %C A090915 20 7---8---9--10 %C A090915 | %C A090915 21--22--23--24--25 %C A090915 . %C A090915 Now read off the numbers in a square clockwise spiral: 1 -> 8 -> 7 -> 6 -> 5 -> 4 -> 3 -> 2 -> 9 -> etc. %H A090915 Eric M. Schmidt, <a href="/A090915/b090915.txt">Table of n, a(n) for n = 1..1000</a> %t A090915 With[{x = Floor[(Floor[Sqrt[n-1]]+1)/2]}, Table[If[n==(2*x+1)^2, n, 8*x^2 -n+2], {n, 1, 75}]] (* _G. C. Greubel_, Feb 05 2019 *) %o A090915 (Sage) %o A090915 def a(n): %o A090915 x = (isqrt(n-1)+1)//2 %o A090915 return n if n == (2*x+1)^2 else 8*x^2 + 2 - n %o A090915 [a(n) for n in (1..75)] # _Eric M. Schmidt_, May 18 2016 %o A090915 (PARI) {s(n) = ((sqrtint(n-1)+1)/2)\1}; %o A090915 for(n=1,75, print1(if(n == (2*s(n)+1)^2, n, 8*s(n)^2-n+2), ", ")) \\ _G. C. Greubel_, Feb 05 2019 %Y A090915 Cf. A020703, A090861, A090925, A090928, A090929, A090930. %K A090915 easy,nonn %O A090915 1,2 %A A090915 _Felix Tubiana_, Feb 26 2004 %E A090915 Offset corrected by _Eric M. Schmidt_, May 18 2016