This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090942 #36 Sep 08 2022 08:45:12 %S A090942 2,4,9,13,27,23,41,33,55,83,51,103,89,69,103,143,155,95,175,147,113, %T A090942 205,171,227,289,201,155,215,165,229,547,255,329,205,489,221,373,385, %U A090942 319,407,419,263,611,279,373,289,763,787,419,327,433,545,345,781,581,593 %N A090942 n-th arithmetic mean = prime(n). %C A090942 Partial sums give A033286. - _Omar E. Pol_, Apr 20 2015 %C A090942 In other words, this is the unique sequence such that for all n >= 1, (1/n) * Sum_{k=1..n} a(k) = prime(n). - _Antti Karttunen_, Apr 30 2015 %H A090942 G. C. Greubel, <a href="/A090942/b090942.txt">Table of n, a(n) for n = 1..10000</a> %F A090942 a(n) = n*prime(n) - (n-1)*prime(n-1). %F A090942 a(n) = A033287(n-2), n>1. - _R. J. Mathar_, Sep 08 2008 %F A090942 a(n) = A000040(n) + A141042(n-1), n >=2. - _Omar E. Pol_, Apr 20 2015 %e A090942 From _Omar E. Pol_, Apr 20 2015: (Start) %e A090942 Illustration of initial terms: %e A090942 Consider a diagram in the first quadrant of the square grid in which the length of the n-th horizontal line segment is equal to the n-th prime, as shown below: %e A090942 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A090942 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 51| %e A090942 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 83| | %e A090942 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 55| | | %e A090942 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 33| | | | %e A090942 . |_ _ _ _ _ _ _ _ _ _ _ _ _ 41| | | | | %e A090942 . |_ _ _ _ _ _ _ _ _ _ _ 23| | | | | | %e A090942 . |_ _ _ _ _ _ _ 27| | | | | | | %e A090942 . |_ _ _ _ _ 13| | | | | | | | %e A090942 . |_ _ _ 9| | | | | | | | | %e A090942 . |_ _ 4| | | | | | | | | | %e A090942 . |_2_|_|_ _|_ _|_ _ _ _|_ _|_ _ _ _|_ _|_ _ _ _|_ _ _ _ _ _|_ _| %e A090942 . %e A090942 a(n) is also the area (or the number of cells) in the n-th region of the diagram. For example: a(4) = 7 + 6 = 13. %e A090942 (End) %t A090942 Table[If[n==1, 2, nPrime@n -(n-1)Prime[n-1]], {n, 60}] (* _Michael De Vlieger_, Apr 20 2015 *) %o A090942 (PARI) vector(60, n, if(n==1,2, n*prime(n) -(n-1)*prime(n-1))) \\ _G. C. Greubel_, Feb 04 2019 %o A090942 (Magma) [n le 1 select 2 else n*NthPrime(n) - (n-1)*NthPrime(n-1): n in [1..60]]; // _G. C. Greubel_, Feb 04 2019 %o A090942 (Sage) [2] + [n*nth_prime(n) - (n-1)*nth_prime(n-1) for n in (2..60)] # _G. C. Greubel_, Feb 04 2019 %Y A090942 Cf. A000040, A007504, A033286, A033287, A141042, A152535. %K A090942 nonn %O A090942 1,1 %A A090942 _Amarnath Murthy_, Dec 29 2003 %E A090942 Corrected and extended by _Ray Chandler_, Dec 31 2003