cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090984 a(n) is the number of pairs (x,y) where x is plane partition of n+1 and y is a plane partition of n and x covers y.

Original entry on oeis.org

1, 3, 9, 21, 48, 102, 213, 421, 819, 1542, 2854, 5172, 9240, 16233, 28182, 48288, 81862, 137295, 228153, 375658, 613554, 994155, 1599309, 2554932, 4055406, 6397160, 10032907, 15647277, 24275455, 37471066, 57562533, 88018488, 133996590, 203126712, 306671525, 461184246, 690935892, 1031379271
Offset: 0

Views

Author

Wouter Meeussen, Feb 28 2004

Keywords

Comments

x = (x_1_1 .. x_1_u1)(x_2_1 .. x_2_u2) .. (x_k_1 .. x_k_uk) y = (y_1_1 .. y_1_v1)(y_2_1 .. y-2_v2) .. (y_m_1 .. y_m_vm) x covers y iff ui >= vi, k >= m, x_i_j >= y_i_j, or, the 3-dimensional Ferrers plot of y falls within that of x.
The analog for ordinary partitions and 2D-Ferrers plots gives A000070.

Crossrefs

Programs

  • Mathematica
    coversplaneQ[parent_?planepartitionQ, child_?planepartitionQ] := Block[{dif=Length[parent]-Length[child], p=Length/@ parent, c=PadRight[Length/@ child, Length[parent], 0]}, And[dif>=0, Min[p-c]>=0, Min[parent-MapThread[PadRight[ #1, #2, 0]&, { PadRight[child, Length[parent], {{0}}], p}]]>=0]]; Table[Count[Outer[coversplaneQ, planepartitions[k], planepartitions[k-1], 1], True, -1], {k, 12}]