A090985 Triangle read by rows: T(n,k) is the number of dissections of a convex n-gon by nonintersecting diagonals, having exactly k triangles (n >= 2, k >= 0).
1, 0, 1, 1, 0, 2, 1, 5, 0, 5, 4, 6, 21, 0, 14, 8, 35, 28, 84, 0, 42, 25, 80, 216, 120, 330, 0, 132, 64, 309, 540, 1155, 495, 1287, 0, 429, 191, 890, 2475, 3080, 5720, 2002, 5005, 0, 1430, 540, 3058, 7788, 16302, 16016, 27027, 8008, 19448, 0, 4862, 1616, 9580, 30108, 54964, 96005, 78624, 123760, 31824, 75582, 0, 16796
Offset: 2
Examples
T(5,1)=5 because the dissections of a convex pentagon having exactly one triangle are obtained by the placement of a diagonal between any pair of non-adjacent vertices. T(6,0)=4 because the dissections of a convex hexagon with no triangles are obtained by the null placement and by placing one diagonal between any of the 3 pairs of opposite vertices. Triangle starts: 1; 0, 1; 1, 0, 2; 1, 5, 0, 5; 4, 6, 21, 0, 14; 8, 35, 28, 84, 0, 42; ...
Links
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
Programs
-
Maple
T := (n,k)->binomial(n+k-2,k)*sum(binomial(n-2+k+i,i)*binomial(n-3-k-i,i-1), i=0..floor((n-2-k)/2))/(n-1): seq(seq(T(n,k),k=0..n-2),n=2..14);
-
Mathematica
T [n_, k_] := Binomial[n+k-2, k] Sum[Binomial[n-2+k+i, i] Binomial[n-3-k-i, i-1], {i, 0, (n-2-k)/2}]/(n-1); Table[T[n, k], {n, 2, 12}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
Formula
T(n, k) = binomial(n+k-2, k)*(Sum_{i=0..floor((n-2-k)/2)} binomial(n-2+k+i, i)*binomial(n-3-k-i, i-1))/(n-1).
G.f.: G=G(t, z) satisfies (1-t)G^3 + (1+t)zG^2 - z^2*(1+z)G + z^4 = 0.
Comments