This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090986 #50 Feb 16 2025 08:32:52 %S A090986 2,7,2,0,2,9,0,5,4,9,8,2,1,3,3,1,6,2,9,5,0,2,3,6,5,8,3,6,7,2,0,3,7,5, %T A090986 5,5,8,4,0,7,1,8,3,6,3,4,6,0,3,1,5,9,4,9,5,0,6,8,9,6,7,8,3,8,5,6,2,4, %U A090986 6,1,9,1,3,6,9,4,8,7,8,8,8,1,9,1,1,5,3,1,1,7,2,1,0,6,9,3,7,6,4,4,8,6,1,0 %N A090986 Decimal expansion of Pi/sinh(Pi). %C A090986 Or, decimal expansion of Pi * csch(Pi). %D A090986 Jonathan M. Borwein, David H. Bailey, and Roland Girgensohn, "Two Products", Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery, Natick, MA: A. K. Peters, 2004, pp. 4-7. %H A090986 G. C. Greubel, <a href="/A090986/b090986.txt">Table of n, a(n) for n = 0..10000</a> %H A090986 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HyperbolicCosecant.html">Hyperbolic Cosecant</a>. %H A090986 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>. %F A090986 Equals Pi/sinh(Pi) = Product_{k>=1} k^2/(k^2+1). %F A090986 Equals Pi * csch(Pi) = Product_{n >= 2} (n^2 - 1)/(n^2 + 1). - _Jonathan Vos Post_, Dec 07 2005 %F A090986 Equals Gamma(1+i)*Gamma(1-i), where i is the imaginary unit. - _Vaclav Kotesovec_, Dec 10 2015 %F A090986 Equals (1)_(-i)*(1)_i where (n)_k denotes the rising factorial. - _Peter Luschny_, May 06 2022 %F A090986 Equals 1 - 2*Sum_{n >= 1} (-1)^(n+1)/(n^2 + 1). - _Peter Bala_, Jan 01 2023 %F A090986 Equals A212879^2. - _Amiram Eldar_, Oct 25 2024 %e A090986 0.272029054982133162950236583672... %t A090986 Re[N[Gamma[1+I]*Gamma[1-I], 104]] (* _Vaclav Kotesovec_, Dec 09 2015 *) %t A090986 RealDigits[Pi/Sinh[Pi],10,120][[1]] (* _Harvey P. Dale_, May 16 2019 *) %o A090986 (PARI) default(realprecision, 100); Pi/sinh(Pi) \\ _G. C. Greubel_, Feb 02 2019 %o A090986 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sinh(Pi(R)); // _G. C. Greubel_, Feb 02 2019 %o A090986 (Sage) numerical_approx(pi/sinh(pi), digits=100) # _G. C. Greubel_, Feb 02 2019 %Y A090986 Cf. A112407, A144663, A144664, A144665, A144666, A144667, A144668, A144669, A212879. %K A090986 cons,nonn %O A090986 0,1 %A A090986 _Benoit Cloitre_, Feb 28 2004