cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091019 Denominators of the Taylor series of arccosh(z)/sqrt(2(x-1)) about 1.

This page as a plain text file.
%I A091019 #8 Feb 16 2025 08:32:52
%S A091019 1,12,160,896,18432,90112,851968,1310720,142606336,637534208,
%T A091019 5637144576,24696061952,429496729600,1855425871872,15942918602752,
%U A091019 68169720922112,1548112371908608,3940649673949184,166633186212708352
%N A091019 Denominators of the Taylor series of arccosh(z)/sqrt(2(x-1)) about 1.
%C A091019 Numerators are A055786.
%H A091019 Q. Wei, R. Onofrio, <a href="http://dx.doi.org/10.1016/j.physleta.2010.03.035">Edge effects in electrostatic calibrations for the measurement of the Casimir force</a>, Phys. Lett. A 374 (2010) 2230-2234.
%H A091019 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseHyperbolicCosecant.html">Inverse Hyperbolic Cosecant</a>
%e A091019 Arccosh(z) = 1 + (1 - z)/12 + (3*(-1 + z)^2)/160 - (5*(-1 + z)^3)/896 + (35*(-1 + z)^4)/18432 - (63*(-1 + z)^5)/90112 + ...
%Y A091019 Cf. A055786.
%K A091019 nonn
%O A091019 0,2
%A A091019 _Eric W. Weisstein_, Dec 13 2003