This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091036 #7 Jul 27 2022 10:43:11 %S A091036 1,840,498960,285405120,173145772800,115598414131200, %T A091036 86165279456256000,72034173625430016000,67538393730337001472000, %U A091036 70856069211827240140800000,82901600977837870964736000000 %N A091036 Sixth column (k=7) of array A090438 ((4,2)-Stirling2) divided by 48=4!*2. %F A091036 a(n)=A090438(n, 7)/48, n>=4. %F A091036 a(n)=binomial(2*n-2, 5)*(2*n)!/(7!*4!*2)= A053132(n+1)*(2*n)!/(7!*4!), n>=4. %F A091036 E.g.f.:(sum(((-1)^(p+1))*binomial(7, p)*hypergeom([(p-1)/2, p/2], [], 4*x), p=2..7) + 6)/(7!*48) (cf. A090438). %F A091036 D-finite with recurrence (2*n-7)*(n-4)*a(n) -2*n*(n-1)*(2*n-1)*(2*n-3)*a(n-1)=0. - _R. J. Mathar_, Jul 27 2022 %p A091036 A091036 := proc(n) %p A091036 binomial(2*n-2,5)*(2*n)!/7!/4!/2 ; %p A091036 end proc: %p A091036 seq(A091036(n),n=4..40) ; # _R. J. Mathar_, Jul 27 2022 %Y A091036 Cf. A091035 (fifth column of A090438). %K A091036 nonn,easy %O A091036 4,2 %A A091036 _Wolfdieter Lang_, Jan 23 2004