cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091042 Triangle of even numbered entries of odd numbered rows of Pascal's triangle A007318.

This page as a plain text file.
%I A091042 #74 Apr 30 2025 14:41:18
%S A091042 1,1,3,1,10,5,1,21,35,7,1,36,126,84,9,1,55,330,462,165,11,1,78,715,
%T A091042 1716,1287,286,13,1,105,1365,5005,6435,3003,455,15,1,136,2380,12376,
%U A091042 24310,19448,6188,680,17,1,171,3876,27132,75582,92378,50388,11628,969,19,1,210,5985,54264,203490,352716,293930,116280,20349,1330,21
%N A091042 Triangle of even numbered entries of odd numbered rows of Pascal's triangle A007318.
%C A091042 The row polynomials Pe(n, x) := Sum_{m=0..n} a(n, m)*x^m appear as numerators of the generating functions for the even numbered column sequences of array A034870.
%C A091042 Elements have the same parity as those of Pascal's triangle.
%C A091042 All zeros of polynomial Pe(n, x) are negative. They are -tan^2(Pi/2*n+1), -tan^2(2*Pi/2*n+1), ..., -tan^2(n*Pi/2*n+1). Moreover, for m >= 1, Pe(m, -x^2) is the characteristic polynomial of the linear difference equation with constant coefficients for differences between multiples of 2*m+1 with even and odd digit sum in base 2*m in the interval [0,(2*m)^n). - _Vladimir Shevelev_ and _Peter J. C. Moses_, May 22 2012
%C A091042 Row reverse of A103327. - _Peter Bala_, Jul 29 2013
%C A091042 The row polynomial Pe(d, x), multiplied by (2*d)!/d! = A001813(d), gives the numerator polynomial of the o.g.f. of the sequence of the diagonal d, for d >= 0, of the Sheffer triangle Lah[4,1] given in A048854. - _Wolfdieter Lang_, Oct 12 2017
%D A091042 A. M. Yaglom and I. M. Yaglom, An elementary proof of the Wallis, Leibniz and Euler formulas for pi. Uspekhi Matem. Nauk, VIII (1953), 181-187(in Russian).
%H A091042 Indranil Ghosh, <a href="/A091042/b091042.txt">Rows 0..120 of triangle, flattened</a>
%H A091042 Wolfdieter Lang, <a href="/A091042/a091042.txt">First 9 rows</a>.
%H A091042 V. Shevelev, <a href="http://arxiv.org/abs/0710.3177">On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m</a>, arXiv:0710.3177 [math.NT], 2007.
%H A091042 V. Shevelev and P. Moses, <a href="http://arxiv.org/abs/1207.0404">Tangent power sums and their applications</a>, arXiv:1207.0404 [math.NT], 2012-2014.
%F A091042 T(n, m) = binomial(2*n+1, 2*m) = A007318(2*n+1, 2*m), n >= m >= 0, otherwise 0.
%F A091042 From _Peter Bala_, Jul 29 2013: (Start)
%F A091042 E.g.f.: sinh(t)*cosh(sqrt(x)*t) = t + (1 + 3*x)*t^3/3! + (1 + 10*x + 5*x^2)*t^5/5! + (1 + 21*x + 35*x^2 + 7*x^3)*t^7/7! + ....
%F A091042 O.g.f.: A(x,t) = (1 + (x - 1)*t)/( (1 + (x - 1)*t)^2 - 4*t*x ) = 1 + (1 + 3*x)*t + (1 + 10*x + 5*x^2)*t^2 + ...
%F A091042 The function A( x/(x + 4), t*(x + 4)/4 ) = 1 + (1 + x)*t + (1 + 3*x + x^2)*t^2 + ... is the o.g.f. for A085478.
%F A091042 O.g.f. for n-th diagonal: ( Sum_{k = 0..n} binomial(2*n,2*k)*x^k )/(1 - x)^(2*n).
%F A091042 n-th row polynomial R(n,x) = (1/2)*( (1 + sqrt(x))^(2*n+1) - (sqrt(x) - 1)^(2*n+1) ).
%F A091042 Row sums A000302. (End)
%F A091042 T(n, k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2) with T(0,0)=T(1,0)=1, T(1,1)=3, T(n,k)=0 if k < 0 or if k > n. - _Philippe Deléham_, Nov 26 2013
%F A091042 From _Peter Bala_, Jan 31 2022: (Start)
%F A091042 Define S(r,N) = Sum_{j = 1..N} j^r. Then the following identity holds for n >= 0: (1/2)*(N^2 + N)^(2*n+1) = T(n,0)*S(2*n+1,N) + T(n,1)*S(2*n+3,N) + ... + T(n,n)* S(4*n+1,N). Some examples are given below. (End)
%e A091042 Triangle a(n, m) begins:
%e A091042 n\m  0   1    2     3      4      5      6      7     8    9  10 ...
%e A091042 0:   1
%e A091042 1:   1   3
%e A091042 2:   1  10    5
%e A091042 3:   1  21   35     7
%e A091042 4:   1  36  126    84      9
%e A091042 5:   1  55  330   462    165     11
%e A091042 6:   1  78  715  1716   1287    286     13
%e A091042 7:   1 105 1365  5005   6435   3003    455     15
%e A091042 8:   1 136 2380 12376  24310  19448   6188    680    17
%e A091042 9:   1 171 3876 27132  75582  92378  50388  11628   969   19
%e A091042 10:  1 210 5985 54264 203490 352716 293930 116280 20349 1330  21
%e A091042 ... reformatted and extended. - _Wolfdieter Lang_, Oct 12 2017
%e A091042 From _Peter Bala_, Jan 30 2022: (Start)
%e A091042 (1/2)*(N^2 + N) = Sum_{j = 1..N} j.
%e A091042 (1/2)*(N^2 + N)^3 = Sum_{j = 1..N} j^3 + 3*Sum_{j = 1..N} j^5.
%e A091042 (1/2)*(N^2 + N)^5 = Sum_{j = 1..N} j^5 + 10*Sum_{j = 1..N} j^7 + 5*Sum_{j = 1..N} j^9.
%e A091042 (1/2)*(N^2 + N)^7 = Sum_{j = 1..N} j^7 + 21*Sum_{j = 1..N} j^9 + 35*Sum_{j = 1..N} j^11 + 7*Sum_{j = 1..N} j^13. (End)
%p A091042 f := (x, t) -> cosh(sqrt(x)*t)*sinh(t); seq(seq(coeff(((2*n+1)!*coeff(series(f(x,t),t,2*n+2),t,2*n+1)),x,k),k=0..n),n=0..9); # _Peter Luschny_, Jul 29 2013
%t A091042 T[n_, k_] /; 0 <= k <= n := T[n, k] = 2T[n-1, k] + 2T[n-1, k-1] + 2T[n-2, k-1] - T[n-2, k] - T[n-2, k-2]; T[0, 0] = T[1, 0] = 1; T[1, 1] = 3; T[_, _] = 0;
%t A091042 Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _Jean-François Alcover_, Jul 29 2018, after _Philippe Deléham_ *)
%t A091042 Table[Binomial[2*n+1, 2*k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Aug 01 2019 *)
%o A091042 (PARI) T(n,k) = binomial(2*n+1, 2*k); \\ _G. C. Greubel_, Aug 01 2019
%o A091042 (Magma) [[Binomial(2*n+1,2*k): k in [0..n]]: n in [0..12]]; // _G. C. Greubel_, Aug 01 2019
%o A091042 (Sage) [[binomial(2*n+1, 2*k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Aug 01 2019
%o A091042 (GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n+1, 2*k) ))); # _G. C. Greubel_, Aug 01 2019
%o A091042 (Python)
%o A091042 from math import comb, isqrt
%o A091042 def A091042(n): return comb((r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))<<1|1,n-comb(r+1,2)<<1) # _Chai Wah Wu_, Apr 30 2025
%Y A091042 Cf. A212500, A038754. A000302 (row sums), A085478, A103327 (row reverse), A048854, A103328.
%K A091042 nonn,easy,tabl
%O A091042 0,3
%A A091042 _Wolfdieter Lang_, Jan 23 2004