cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091043 Normalized triangle of odd numbered entries of even numbered rows of Pascal's triangle A007318.

This page as a plain text file.
%I A091043 #10 Aug 28 2019 16:37:34
%S A091043 1,1,1,3,10,3,1,7,7,1,5,60,126,60,5,3,55,198,198,55,3,7,182,1001,1716,
%T A091043 1001,182,7,1,35,273,715,715,273,35,1,9,408,4284,15912,24310,15912,
%U A091043 4284,408,9,5,285,3876,19380,41990,41990,19380,3876,285,5,11,770,13167,85272
%N A091043 Normalized triangle of odd numbered entries of even numbered rows of Pascal's triangle A007318.
%C A091043 b(n)= A006519(n), with b(n) defined in the formula. For every odd n b(n)=1.
%C A091043 The row polynomials Po(n,x) := 2*b(n)*sum(a(n,m)*x^m,m=0..n-1), n>=1, appear as numerators of the generating functions for the odd numbered column sequences of array A034870. b(n) is defined in the formula below.
%H A091043 W. Lang, <a href="/A091043/a091043.txt">First 9 rows</a>.
%F A091043 a(n, m)= binomial(2*n, 2*m+1)/(2*b(n)), n>=m+1>=1, else 0, with b(n) := GCD(seq(binomial(2*n, 2*m+1)/2, m=0..n-1)), where GCD denotes the greatest common divisor of a set of numbers (here one half of the odd numbered entries in the even numbered rows of Pascal's triangle). It suffices to consider m=0..floor((n-1)/2) due to symmetry.
%e A091043 [1];[1,1];[3,10,3];[1,7,7,1];[5,60,126,60,5];...
%e A091043 n=3: GCD(3,10,3)=GCD(3,10)=1=b(3)=A006519(3); n=4: GCD(4,28,28,4)=GCD(4,28)=4=b(4)=A006519(4).
%K A091043 nonn,easy,tabl
%O A091043 1,4
%A A091043 _Wolfdieter Lang_, Jan 23 2004