This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091155 #25 Apr 25 2025 05:29:26 %S A091155 2,3,4,7,15,23,39,63,75,87,111,135,147,159,195,219,231,255,267,315, %T A091155 387,399,411,423,435,447,459,495,519,567,615,663,675,699,711,735,747, %U A091155 759,771,819,867,915,999,1011,1023,1035,1047,1071,1095,1119,1155,1167,1263 %N A091155 Numbers m such that m - 2^k is squarefree for all 1 <= 2^k < m. %C A091155 Erdős conjectures that this sequence is infinite. It appears that m == 3 (mod 12) except for m = 2, 4, 7 and 23. %D A091155 R. K. Guy, Unsolved Problems in Number Theory, A19. %H A091155 T. D. Noe, <a href="/A091155/b091155.txt">Table of n, a(n) for n = 1..10000</a> %H A091155 P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1950-07.pdf">On integers of the form 2^k + p and some related problems</a>, Summa Brasil. Math. 2 (1950), pp. 113-123. %e A091155 39 is on the list because 38, 37, 35, 31, 23 and 7 are all squarefree. %t A091155 a={}; Do[k=1; While[sf=SquareFreeQ[n-k]; sf&&2k<n, k=2k]; If[sf, AppendTo[a, n]], {n, 2000}]; a %o A091155 (PARI) is(n)=for(k=1,log(n+.5)\log(2),if(!issquarefree(n-2^k),return(0))); 1 \\ _Charles R Greathouse IV_, Apr 13 2014 %Y A091155 Cf. A039669 (m such that m-2^k are all primes). %K A091155 nonn %O A091155 1,1 %A A091155 _T. D. Noe_, Dec 23 2003