This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091159 #56 Jul 12 2025 16:12:20 %S A091159 1,11,261,9694,502110,33064966,2642657228,248639631948,26941775019280, %T A091159 3306075027570423,453373928307505005,68734915059053558299, %U A091159 11418459384326497964902,2062999819948725194529075,402798929430911987111828116,84526877217018050866911342594,18973553064409449260472376235331 %N A091159 Number of distinct nets for the n-hypercube. %D A091159 Peter Turney, Unfolding the Tesseract, Journal of Recreational Mathematics, Vol. 17(1), 1984-85. %H A091159 Jarrod G. Sage, <a href="/A091159/b091159.txt">Table of n, a(n) for n = 2..100</a> (calculated by Alex Gunning) %H A091159 Moritz Firsching, <a href="https://mathoverflow.net/q/300713/39495">Number of hypercube unfoldings</a> %H A091159 Alex Gunning, <a href="https://postchimpblog.wordpress.com/2022/05/29/calculating-the-number-of-nets-of-hypercubes/">Calculating the number of nets of hypercubes</a> %H A091159 Dusko Letic, Nenad Cakic, Branko Davidovic, Ivana Berkovic and Eleonora Desnica, <a href="https://doi.org/10.1186/1687-1847-2011-60">Some certain properties of the generalized hypercubical functions</a>, Advances in Difference Equations, 2011, 2011:60. %H A091159 Mark McClure, <a href="https://mathoverflow.net/a/199003">3D models of the unfoldings of the hypercube</a> %H A091159 Matt Parker, <a href="https://youtube.com/watch?v=Yq3P-LhlcQo">How many 3D nets does a 4D hypercube have?</a>, Stand-up Maths video (2021). %H A091159 Peter D. Turney, <a href="https://unfolding.apperceptual.com">Unfolding the Tesseract</a> %H A091159 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Hypercube.html">Hypercube</a> %K A091159 nonn %O A091159 2,2 %A A091159 _Eric W. Weisstein_, Dec 24 2003 %E A091159 Offset corrected by _Andrey Zabolotskiy_, Dec 20 2017 %E A091159 a(5)-a(8) from _Moritz Firsching_, Mar 16 2021 %E A091159 a(9)-a(10) from _Moritz Firsching_ and Luca Versari, May 14 2021 %E A091159 a(11) and beyond from _Jarrod G. Sage_ (calculated by Alex Gunning), Jul 09 2025