A091187 Triangle read by rows: T(n,k) is the number of ordered trees with n edges and k branches.
1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 12, 16, 9, 1, 5, 20, 40, 45, 21, 1, 6, 30, 80, 135, 126, 51, 1, 7, 42, 140, 315, 441, 357, 127, 1, 8, 56, 224, 630, 1176, 1428, 1016, 323, 1, 9, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 1, 10, 90, 480, 1890, 5292, 10710, 15240, 14535, 8350, 2188
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 2, 2; 1, 3, 6, 4; 1, 4, 12, 16, 9; 1, 5, 20, 40, 45, 21; 1, 6, 30, 80, 135, 126, 51; 1, 7, 42, 140, 315, 441, 357, 127;
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1..150, flattened)
- J.-L. Baril, S. Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
- J. Riordan, Enumeration of plane trees by branches and endpoints, J. Combinat. Theory, Ser A, 19, 214-222, 1975.
- Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
Crossrefs
Cf. A007476. [Gary W. Adamson, Dec 31 2008]
Programs
-
Maple
M := n->sum(binomial(n+1,q)*binomial(n+1-q,q-1),q=0..ceil((n+1)/2))/(n+1): T := (n,k)->binomial(n-1,k-1)*M(k-1): seq(seq(T(n,k),k=1..n),n=1..13);
-
Mathematica
(* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; t[n_, k_] := m[k - 1]*Binomial[n - 1, k - 1]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2013 *)
Formula
T(n,k) = M(k-1)*binomial(n-1, k-1), where M(k) = A001006(k) = (Sum_{q=0..ceiling((k+1)/2)} binomial(k+1, q)*binomial(k+1-q, q-1))/(k+1) is a Motzkin number.
G.f.: G = G(t,z) satisfies t*z*G^2 -(1 - z + t*z)*G + 1- z + t*z = 0.
From Paul Barry, Mar 06 2011: (Start)
G.f.: 1/(1-x-xy-x^2y^2/(1-x-xy-x^2y^2/(1-x-xy-x^2y^2/(1-... (continued fraction).
G.f.: (1-x(1+y)-sqrt(1-2x(1+y)+x^2(1+2y-3y^2)))/(2x^2*y^2).
E.g.f.: exp(x(1+y))*Bessel_I(1,2*x*y)/(x*y). (End)
Comments