cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091187 Triangle read by rows: T(n,k) is the number of ordered trees with n edges and k branches.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 12, 16, 9, 1, 5, 20, 40, 45, 21, 1, 6, 30, 80, 135, 126, 51, 1, 7, 42, 140, 315, 441, 357, 127, 1, 8, 56, 224, 630, 1176, 1428, 1016, 323, 1, 9, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 1, 10, 90, 480, 1890, 5292, 10710, 15240, 14535, 8350, 2188
Offset: 1

Views

Author

Emeric Deutsch, Feb 23 2004

Keywords

Comments

Row sums are the Catalan numbers A000108. Diagonal entries are the Motzkin numbers A001006.
Equals binomial transform of an infinite lower triangular matrix with A001006 as the main diagonal and the rest zeros. [Gary W. Adamson, Dec 31 2008] [Corrected by Paul Barry, Mar 06 2011]
Reversal of A091869. Diagonal sums are A026418(n+2). [Paul Barry, Mar 06 2011]

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  6,   4;
  1, 4, 12,  16,   9;
  1, 5, 20,  40,  45,  21;
  1, 6, 30,  80, 135, 126,  51;
  1, 7, 42, 140, 315, 441, 357, 127;
		

Crossrefs

Cf. A007476. [Gary W. Adamson, Dec 31 2008]

Programs

  • Maple
    M := n->sum(binomial(n+1,q)*binomial(n+1-q,q-1),q=0..ceil((n+1)/2))/(n+1): T := (n,k)->binomial(n-1,k-1)*M(k-1): seq(seq(T(n,k),k=1..n),n=1..13);
  • Mathematica
    (* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; t[n_, k_] := m[k - 1]*Binomial[n - 1, k - 1]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2013 *)

Formula

T(n,k) = M(k-1)*binomial(n-1, k-1), where M(k) = A001006(k) = (Sum_{q=0..ceiling((k+1)/2)} binomial(k+1, q)*binomial(k+1-q, q-1))/(k+1) is a Motzkin number.
G.f.: G = G(t,z) satisfies t*z*G^2 -(1 - z + t*z)*G + 1- z + t*z = 0.
From Paul Barry, Mar 06 2011: (Start)
G.f.: 1/(1-x-xy-x^2y^2/(1-x-xy-x^2y^2/(1-x-xy-x^2y^2/(1-... (continued fraction).
G.f.: (1-x(1+y)-sqrt(1-2x(1+y)+x^2(1+2y-3y^2)))/(2x^2*y^2).
E.g.f.: exp(x(1+y))*Bessel_I(1,2*x*y)/(x*y). (End)