cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091255 Square array computed from gcd(P(x),P(y)) where P(x) and P(y) are polynomials with coefficients in {0,1} given by the binary expansions of x and y, and the polynomial calculation is done over GF(2), with the result converted back to a binary number, and then expressed in decimal. Array is symmetric, and is read by falling antidiagonals.

This page as a plain text file.
%I A091255 #35 Oct 14 2019 13:51:44
%S A091255 1,1,1,1,2,1,1,1,1,1,1,2,3,2,1,1,1,1,1,1,1,1,2,3,4,3,2,1,1,1,3,1,1,3,
%T A091255 1,1,1,2,1,2,5,2,1,2,1,1,1,1,1,3,3,1,1,1,1,1,2,3,4,1,6,1,4,3,2,1,1,1,
%U A091255 3,1,1,1,1,1,1,3,1,1,1,2,1,2,3,2,7,2,3,2,1,2,1,1,1,3,1,5,3,1,1,3,5,1,3,1,1
%N A091255 Square array computed from gcd(P(x),P(y)) where P(x) and P(y) are polynomials with coefficients in {0,1} given by the binary expansions of x and y, and the polynomial calculation is done over GF(2), with the result converted back to a binary number, and then expressed in decimal.  Array is symmetric, and is read by falling antidiagonals.
%C A091255 Array is read by antidiagonals, with (x,y) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
%C A091255 Analogous to A003989.
%C A091255 "Coded in binary" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where a(k)=0 or 1).
%H A091255 Antti Karttunen, <a href="/A091255/b091255.txt">Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of array</a>
%H A091255 A. Karttunen, <a href="/A091247/a091247.scm.txt">Scheme-program for computing this sequence.</a>
%H A091255 <a href="/index/Ge#GF2X">Index entries for sequences operating on polynomials in ring GF(2)[X]</a>
%H A091255 <a href="/index/La#Lattices">Index entries for sequences related to Lattices</a>
%F A091255 A(x,y) = A(y,x) = A(x, A003987(x,y)) = A(A003987(x,y), y), where A003987 gives the bitwise-XOR of its two arguments. - _Antti Karttunen_, Sep 28 2019
%e A091255 The top left 17 X 17 corner of the array:
%e A091255       1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
%e A091255     +---------------------------------------------------------------
%e A091255    1: 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1, ...
%e A091255    2: 1, 2, 1, 2, 1, 2, 1, 2, 1,  2,  1,  2,  1,  2,  1,  2,  1, ...
%e A091255    3: 1, 1, 3, 1, 3, 3, 1, 1, 3,  3,  1,  3,  1,  1,  3,  1,  3, ...
%e A091255    4: 1, 2, 1, 4, 1, 2, 1, 4, 1,  2,  1,  4,  1,  2,  1,  4,  1, ...
%e A091255    5: 1, 1, 3, 1, 5, 3, 1, 1, 3,  5,  1,  3,  1,  1,  5,  1,  5, ...
%e A091255    6: 1, 2, 3, 2, 3, 6, 1, 2, 3,  6,  1,  6,  1,  2,  3,  2,  3, ...
%e A091255    7: 1, 1, 1, 1, 1, 1, 7, 1, 7,  1,  1,  1,  1,  7,  1,  1,  1, ...
%e A091255    8: 1, 2, 1, 4, 1, 2, 1, 8, 1,  2,  1,  4,  1,  2,  1,  8,  1, ...
%e A091255    9: 1, 1, 3, 1, 3, 3, 7, 1, 9,  3,  1,  3,  1,  7,  3,  1,  3, ...
%e A091255   10: 1, 2, 3, 2, 5, 6, 1, 2, 3, 10,  1,  6,  1,  2,  5,  2,  5, ...
%e A091255   11: 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 11,  1,  1,  1,  1,  1,  1, ...
%e A091255   12: 1, 2, 3, 4, 3, 6, 1, 4, 3,  6,  1, 12,  1,  2,  3,  4,  3, ...
%e A091255   13: 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1, 13,  1,  1,  1,  1, ...
%e A091255   14: 1, 2, 1, 2, 1, 2, 7, 2, 7,  2,  1,  2,  1, 14,  1,  2,  1, ...
%e A091255   15: 1, 1, 3, 1, 5, 3, 1, 1, 3,  5,  1,  3,  1,  1, 15,  1, 15, ...
%e A091255   16: 1, 2, 1, 4, 1, 2, 1, 8, 1,  2,  1,  4,  1,  2,  1, 16,  1, ...
%e A091255   17: 1, 1, 3, 1, 5, 3, 1, 1, 3,  5,  1,  3,  1,  1,  15, 1, 17, ...
%e A091255   ...
%e A091255 3, which is "11" in binary, encodes polynomial X + 1, while 7 ("111" in binary) encodes polynomial X^2 + X + 1, whereas 9 ("1001" in binary), encodes polynomial X^3 + 1. Now (X + 1)(X^2 + X + 1) = (X^3 + 1) when the polynomials are multiplied over GF(2), or equally, when multiplication of integers 3 and 7 is done as a carryless base-2 product (A048720(3,7) = 9). Thus it follows that A(3,9) = A(9,3) = 3 and A(7,9) = A(9,7) = 7.
%e A091255 Furthermore, 5 ("101" in binary) encodes polynomial X^2 + 1 which is equal to (X + 1)(X + 1) in GF(2)[X], thus A(5,9) = A(9,5) = 3, as the irreducible polynomial (X + 1) is the only common factor for polynomials X^2 + 1 and X^3 + 1.
%o A091255 (PARI) A091255sq(a,b) = fromdigits(Vec(lift(gcd(Pol(binary(a))*Mod(1, 2),Pol(binary(b))*Mod(1, 2)))),2); \\ _Antti Karttunen_, Aug 12 2019
%Y A091255 Cf. A003987, A048720, A091256, A091257, A106449, A280500, A280501, A280503, A280505, A286153, A325634, A325635, A325825.
%Y A091255 Cf. also A327856 (the upper left triangular section of this array), A327857.
%K A091255 nonn,tabl,look
%O A091255 1,5
%A A091255 _Antti Karttunen_, Jan 03 2004
%E A091255 Data section extended up to a(105), examples added by _Antti Karttunen_, Sep 28 2019