This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091259 #33 Aug 28 2024 01:06:04 %S A091259 1,3,7,73,21,21,43,39,757,63,111,73,157,129,147,151,273,2271,343,219, %T A091259 301,333,507,273,15751,471,511,3139,813,441,931,4161,777,819,903, %U A091259 55261,1333,1029,1099,819,1641,903,1807,8103,15897,1521,2163,1057,39331,47253 %N A091259 Numerator of sigma_3(n)/sigma(n). %H A091259 Robert Israel, <a href="/A091259/b091259.txt">Table of n, a(n) for n = 1..10000</a> %F A091259 a(p) = A002061(p), for prime p. - _Robert Israel_, Jan 25 2018 %F A091259 Sum_{k=1..n} a(k)/A091258(k) ~ c * n^3, where c = (Pi^2/18)*zeta(3)^2 * Product_{p prime} (1 - 2/p^2 - 1/p^3 + 5/p^5 - 3/p^6) = 0.2382648075... . - _Amiram Eldar_, Nov 21 2022 %F A091259 Conjecture: a(n) (mod 3) = A353816(n). - _Michel Marcus_, Aug 11 2024 %p A091259 seq(numer(numtheory:-sigma[3](n)/numtheory:-sigma(n)),n=1..100); # _Robert Israel_, Jan 25 2018 %t A091259 Array[Numerator[DivisorSigma[3,#]/DivisorSigma[1,#]]&,50] (* _Harvey P. Dale_, Feb 29 2016 *) %o A091259 (PARI) a(n) = numerator(sigma(n, 3)/sigma(n)); \\ _Michel Marcus_, Jan 26 2018 %o A091259 (Magma) [Numerator(DivisorSigma(3,n)/DivisorSigma(1,n)): n in [1..50]]; // _Vincenzo Librandi_, Jan 26 2018 %Y A091259 Cf. A001158, A000203, A002061, A002117, A086463, A091258 (denominators), A091260. %Y A091259 Cf. A032766. %K A091259 easy,nonn,frac,look %O A091259 1,2 %A A091259 _Labos Elemer_, Feb 12 2004