This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091281 #24 Apr 06 2025 08:44:51 %S A091281 1,5,91,1125,17259,253125,3806091,56953125,854518059,12814453125, %T A091281 192222105291,2883251953125,43248906698859,648731689453125, %U A091281 9730978399444491,145964630126953125,2189469525287839659,32842041778564453125,492630628439671823691,7389459400177001953125 %N A091281 Central term in powers of the Lo-Shu Magic Square as a matrix. %C A091281 a(n)/a(n-1) tends to 15, the "Magic Number" of the Lo-Shu Magic Square. %C A091281 There are a total of 8 variations of the Lo-Shu magic square by rotations and/or reflections. Four of the variations (those with 4, 5, 6 or 6, 5, 4 in the diagonal), have a(2) = 91. The other 4 variations (those with 2, 5, 8 or 8, 5, 2 in the diagonal - lower left to upper right) have a(2) = 59, but otherwise, a(n) for the latter sequence (central term in analogous powers of those matrices) = A091281(n). %H A091281 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15,24,-360). %F A091281 The Lo-Shu magic square square as a 3 X 3 matrix is: [8, 1, 6 / 3, 5, 7 / 4, 9, 2] = M. Then a(n) = central term in M^n. %F A091281 a(2*k+1) = 5*15^(2*k). E.g. a(5) = 253125 = 5*15^4. %F A091281 a(n) = (1/69)*(23*15^n - 2*24^floor((n+1)/2) + 2*24^floor((n+2)/2)). - _Ralf Stephan_, Dec 02 2004 %F A091281 G.f.: -(8*x^2+10*x-1) / ((15*x-1)*(24*x^2-1)). - _Colin Barker_, Dec 10 2012 %e A091281 a(2) = 91 since M^2 = [91, 67, 67 / 67, 91, 67 / 67, 67, 91]. %o A091281 (PARI) a(n)=([8,1,6;3,5,7;4,9,2]^n)[2,2] \\ _Charles R Greathouse IV_, Dec 14 2011 %Y A091281 Cf. A033812. %K A091281 nonn,easy %O A091281 0,2 %A A091281 _Gary W. Adamson_, Dec 28 2003 %E A091281 a(12)-a(19) from _Charles R Greathouse IV_, Dec 14 2011