A091298 Triangle read by rows: T(n,k) is the number of plane partitions of n containing exactly k parts.
1, 1, 2, 1, 2, 3, 1, 4, 3, 5, 1, 4, 7, 5, 7, 1, 6, 10, 13, 7, 11, 1, 6, 14, 20, 19, 11, 15, 1, 8, 18, 33, 32, 31, 15, 22, 1, 8, 25, 43, 56, 54, 43, 22, 30, 1, 10, 29, 66, 81, 99, 78, 64, 30, 42, 1, 10, 37, 83, 126, 150, 148, 118, 88, 42, 56, 1, 12, 44, 114, 174, 246, 235, 230, 166, 124, 56, 77
Offset: 1
Examples
This plane partition of n=7: {{3,1,1},{2}} contains 4 parts: 3,1,1,2. Triangle T(n,k) begins: 1; 1, 2; 1, 2, 3; 1, 4, 3, 5; 1, 4, 7, 5, 7; 1, 6, 10, 13, 7, 11; 1, 6, 14, 20, 19, 11, 15; 1, 8, 18, 33, 32, 31, 15, 22; 1, 8, 25, 43, 56, 54, 43, 22, 30; 1, 10, 29, 66, 81, 99, 78, 64, 30, 42; ...
Links
- Alois P. Heinz, Rows n = 1..50
- A. Rovenchak, Enumeration of plane partitions with a restricted number of parts, arXiv preprint arXiv:1401.4367 [math-ph], 2014.
- E. W. Weisstein, Plane partition.
- Wikipedia, Plane partition.
Crossrefs
Programs
-
Mathematica
(* see A089924 for "planepartition" *) Table[Length /@ Split[Sort[Length /@ Flatten /@ planepartitions[n]]], {n, 16}]
-
PARI
A091298(n,k)=sum(i=1,#n=PlanePartitions(n),sum(j=1,#n[i],#n[i][j])==k) PlanePartitions(n,L=0,PP=List())={ n<2&&return([if(n,[[1]],[])]); for(N=1,n, my(P=apply(Vecrev, if(L, select(p->vecmin(L-Vecrev(p,#L))>=0, partitions(N,L[1],#L)), partitions(N)))); if(N
M. F. Hasler, Sep 24 2018
Comments