This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091299 #32 Feb 16 2025 08:32:52 %S A091299 2,8,144,91392,187499658240 %N A091299 Number of (directed) Hamiltonian paths (or Gray codes) on the n-cube. %C A091299 More precisely, this is the number of ways of making a list of the 2^n nodes of the n-cube, with a distinguished starting position and a direction, such that each node is adjacent to the previous one. The final node may or may not be adjacent to the first. %D A091299 M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 24. %H A091299 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a> %H A091299 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HypercubeGraph.html">Hypercube Graph</a> %e A091299 a(1) = 2: we have 1,2 or 2,1. a(2) = 8: label the nodes 1, 2, ..., 4. Then the 8 possibilities are 1,2,3,4; 1,3,4,2; 2,3,4,1; 2,1,4,3; etc. %o A091299 (Python) %o A091299 # A function that calculates A091299[n] from Janez Brank. %o A091299 def CountGray(n): %o A091299 def Recurse(unused, lastVal, nextSet): %o A091299 count = 0 %o A091299 for changedBit in range(0, min(nextSet + 1, n)): %o A091299 newVal = lastVal ^ (1 << changedBit) %o A091299 mask = 1 << newVal %o A091299 if unused & mask: %o A091299 if unused == mask: %o A091299 count += 1 %o A091299 else: %o A091299 count += Recurse( %o A091299 unused & ~mask, newVal, max(nextSet, changedBit + 1) %o A091299 ) %o A091299 return count %o A091299 count = Recurse((1 << (1 << n)) - 2, 0, 0) %o A091299 for i in range(1, n + 1): %o A091299 count *= 2 * i %o A091299 return max(1, count) %o A091299 [CountGray(n) for n in range(1, 4)] %Y A091299 Equals A006069 + A006070. Divide by 2^n to get A003043. %Y A091299 Cf. A003042, A066037, A091302, A284673. %K A091299 nonn,hard,more %O A091299 1,1 %A A091299 _N. J. A. Sloane_, Feb 20 2004 %E A091299 a(5) from Janez Brank (janez.brank(AT)ijs.si), Mar 02 2005