cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091306 Sum of squares of unitary, squarefree divisors of n, including 1.

This page as a plain text file.
%I A091306 #15 Nov 20 2021 07:16:33
%S A091306 1,5,10,1,26,50,50,1,1,130,122,10,170,250,260,1,290,5,362,26,500,610,
%T A091306 530,10,1,850,1,50,842,1300,962,1,1220,1450,1300,1,1370,1810,1700,26,
%U A091306 1682,2500,1850,122,26,2650,2210,10,1,5,2900,170,2810,5,3172,50,3620
%N A091306 Sum of squares of unitary, squarefree divisors of n, including 1.
%C A091306 If b(n,k) = sum of k-th powers of unitary, squarefree divisors of n, including 1, then b(n,k) is multiplicative with b(p,k)=p^k+1 and b(p^e,k)=1 for e>1.
%C A091306 Dirichlet g.f.: zeta(s)*product_{primes p} (1+p^(2-s)-p^(2-2s)). Dirichlet convolution of A000012 with the multiplicative sequence 1, 4, 9, -4, 25, 36, 49, 0, -9, 100, 121, -36, 169, 196,... - _R. J. Mathar_, Aug 28 2011
%H A091306 Amiram Eldar, <a href="/A091306/b091306.txt">Table of n, a(n) for n = 1..10000</a>
%F A091306 Multiplicative with a(p)=p^2+1 and a(p^e)=1 for e>1.
%F A091306 From _Vaclav Kotesovec_, Nov 20 2021: (Start)
%F A091306 Dirichlet g.f.: zeta(s) * zeta(s-2) * Product_{primes p} (1 + p^(4 - 3*s) - p^(2 - 2*s) - p^(4 - 2*s)).
%F A091306 Sum_{k=1..n} a(k) ~ c * zeta(3) * n^3 / 3, where c = Product_{primes p} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.576152735385667059520611078264117275406247116802896188...
%F A091306 (End)
%t A091306 f[p_, e_] := If[e == 1, p^2 + 1, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Aug 30 2019*)
%Y A091306 Cf. A056671, A092261.
%K A091306 mult,easy,nonn
%O A091306 1,2
%A A091306 _Vladeta Jovovic_, Feb 23 2004