cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091323 Minimum number of transversals in a Latin square of order 2n+1.

This page as a plain text file.
%I A091323 #32 Jan 29 2025 22:35:34
%S A091323 1,3,3,3,68
%N A091323 Minimum number of transversals in a Latin square of order 2n+1.
%C A091323 Ryser conjectured that a(n) >= 1 for all n. For even orders the number is 0, since the group table for Z_2n has no transversals.
%C A091323 a(5)<=814, a(6)<=43093, a(7)<=215721. - _Eduard I. Vatutin_, added Apr 09 2024, updated Jan 13 2025
%D A091323 H. J. Ryser, Neuere Probleme der Kombinatorik. Vortraege ueber Kombinatorik, Oberwolfach, 1967, Mathematisches Forschungsinstitut Oberwolfach, pp. 69-91.
%H A091323 B. D. McKay, J. C. McLeod and I. M. Wanless, <a href="http://dx.doi.org/10.1007/s10623-006-0012-8">The number of transversals in a Latin square</a>, Des. Codes Cryptogr., 40, (2006) 269-284.
%H A091323 V. N. Potapov, <a href="https://arxiv.org/abs/1506.01577">On the number of transversals in Latin squares</a>, arxiv:1506.01577 [math.CO], 2015.
%H A091323 Eduard I. Vatutin, <a href="/A091323/a091323_2.txt">Proving list (best known examples)</a>.
%H A091323 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%Y A091323 Cf. A090741, A092237.
%K A091323 nonn,hard,more
%O A091323 0,2
%A A091323 _Richard Bean_, Feb 17 2004
%E A091323 a(4) from _Brendan McKay_ and _Ian Wanless_, May 23 2004