A091325 Triangle T(n,k) read by rows giving number of inequivalent even binary linear [n,k] codes (n >= 1, 0 <= k <= n-1).
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 7, 9, 7, 3, 1, 1, 4, 10, 17, 17, 10, 4, 1, 1, 4, 13, 26, 35, 26, 13, 4, 1
Offset: 1
Examples
Triangle begins 1 1 1 1 1 1 1 2 2 1 1 2 3 2 1 1 3 5 5 3 1
Links
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Index entries for sequences related to binary linear codes
Crossrefs
Row sums give A091326.
Programs
-
Magma
P
:= PolynomialAlgebra(Rationals()); qbinom := function(n,k) return &*[Rationals()|(1-2^(n+1-i))/(1-2^i):i in [1..k]]; end function; for n in [2..9] do G := Sym(n); refmod := PermutationModule(G,GF(2)); refmod := refmod/sub ; CL := ConjugacyClasses(G); acc := &+[qbinom(n-1,k)*t^k:k in [0..n-1]]; n,(acc+&+[P|c[2]*&+[t^(n-1-Dimension(s)):s in Submodules(Restriction(refmod,sub ))]:c in CL|c[1] ne 1])/#G; end for;
Formula
T(n, 0) = T(n, n-1) = 1, T(n, n) = 0; T(n, 1) = floor(n/2); T(n, k) = T(n, n-k-1).
Extensions
Rows 7 - 9 computed by Eric Rains (rains(AT)caltech.edu) using MAGMA, Mar 01 2004
It would be nice even to have a continuation of the numbers for dimension 2, T(n,2).
Comments