This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091345 #6 May 07 2019 04:01:20 %S A091345 0,0,2,30,398,5430,79022,1238790,20944478,381167670,7443745742, %T A091345 155454939750,3459933837758,81801569650710,2048133412585262, %U A091345 54153668865539910,1508122968767710238,44130728380569410550 %N A091345 Exponential convolution of A069321(n) with itself, where we set A069321(0)=0. %F A091345 a(n)=Sum(C(n, k)Sum(i!i Stirling2(k, i), i=1, .., k)Sum(i!i Stirling2(n-k, i), i=1, .., n-k), k=0, .., n) %F A091345 E.g.f.: (exp(x)-1)^2 / (2-exp(x))^4. - _Vaclav Kotesovec_, May 07 2019 %F A091345 a(n) ~ n! * n^3 / (96 * log(2)^(n+4)). - _Vaclav Kotesovec_, May 07 2019 %t A091345 Table[ Sum[Binomial[n, k]Sum[i!i StirlingS2[k, i], {i, 1, k}]Sum[i!i StirlingS2[n - k, i], {i, 1, n - k}], {k, 0, n}], {n, 0, 20}] %t A091345 nmax = 20; CoefficientList[Series[(E^x-1)^2 / (2-E^x)^4, {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, May 07 2019 *) %K A091345 easy,nonn %O A091345 0,3 %A A091345 Mario Catalani (mario.catalani(AT)unito.it), Jan 01 2004