cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091360 Partial sums of A000219.

This page as a plain text file.
%I A091360 #22 Aug 21 2018 08:22:33
%S A091360 1,2,5,11,24,48,96,182,342,624,1124,1983,3462,5947,10114,16993,28290,
%T A091360 46624,76225,123555,198833,317627,504102,794885,1246079,1942112,
%U A091360 3010857,4643515,7126749,10886361,16555324,25067633,37801062,56776035,84951990,126643036,188127997,278507781,410949776,604437277,886284200,1295668181
%N A091360 Partial sums of A000219.
%C A091360 Convergent of columns of A091355.
%H A091360 Joerg Arndt and Vaclav Kotesovec, <a href="/A091360/b091360.txt">Table of n, a(n) for n = 0..5000</a> (first 500 terms from Joerg Arndt)
%H A091360 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A091360 Euler transform of 2, 2, 3, 4, 5, 6, 7, 8, 9, ...
%F A091360 G.f.: 1/( (1-x) * prod(n>=1, (1-x^n)^n ) ). [_Joerg Arndt_, Mar 15 2014]
%F A091360 From _Vaclav Kotesovec_, Aug 16 2015: (Start)
%F A091360 a(n) = Sum_{k=0..n} A000219(k).
%F A091360 a(n) ~ (n/(2*Zeta(3)))^(1/3) * A000219(n).
%F A091360 a(n) ~ exp(1/12 + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 2^(23/36) * sqrt(3*Pi) * Zeta(3)^(5/36) * n^(13/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
%F A091360 (End)
%F A091360 G.f.: exp(Sum_{k>=1} (sigma_2(k) + 1)*x^k/k). - _Ilya Gutkovskiy_, Aug 21 2018
%t A091360 CoefficientList[Series[1/(1-x)*Product[1/(1-x^k)^k,{k,1,50}],{x,0,50}],x] (* _Vaclav Kotesovec_, Aug 16 2015 *)
%o A091360 (PARI) N=66; x='x+O('x^N); Vec( 1/((1-x)*prod(n=1,N, (1-x^n)^n )) ) \\ _Joerg Arndt_, Mar 15 2014
%Y A091360 Cf. A000219, A002117, A074962.
%K A091360 nonn
%O A091360 0,2
%A A091360 _Christian G. Bower_, Jan 02 2004