A091361 Numbers n such that A001840(n) == 0 (mod n).
1, 2, 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279, 285, 291, 297, 303, 309, 315, 321, 327
Offset: 1
Keywords
Examples
A001840(9)=18, so 9 is in the sequence.
Links
- M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550, 2013
Crossrefs
Cf. A001840.
Programs
-
Mathematica
(* b = A001840 *) b[0] = 0; b[1] = 1; b[n_] := b[n] = n (n + 1)/2 - b[n - 1] - b[n - 2]; Reap[For[n = 1, n <= 400, n++, If[Mod[b[n], n] == 0, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 09 2019 *)
Formula
G.f.: conjecture: 2*(1+x)/(1-x)/G(0) +x, where G(k)= 1 + 1/(1 - x*(3*k+1)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
Comments