cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091367 Primes p such that the sum of the digits raised to the 4th power is prime.

This page as a plain text file.
%I A091367 #15 Jun 08 2025 16:15:42
%S A091367 11,23,29,41,43,47,61,67,83,89,101,113,131,179,191,197,223,269,311,
%T A091367 313,331,353,379,397,401,443,461,601,607,641,661,719,739,809,883,911,
%U A091367 937,971,1013,1019,1031,1033,1091,1097,1103,1109,1181,1301,1303,1367,1433
%N A091367 Primes p such that the sum of the digits raised to the 4th power is prime.
%H A091367 Michael S. Branicky, <a href="/A091367/b091367.txt">Table of n, a(n) for n = 1..10000</a>
%e A091367 a(1) = 11 because 1^4 + 1^4 = 2 which is prime.
%e A091367 a(10) = 89 because 8^4 + 9^4 = 10657 which is prime.
%t A091367 upto=500;Select[Prime[Range[upto]],PrimeQ[Total[IntegerDigits[#]^4]]&] (* _Paolo Xausa_, Nov 23 2021 *)
%o A091367 (Python)
%o A091367 from sympy import isprime, primerange
%o A091367 def ok(p): return isprime(sum(int(d)**4 for d in str(p)))
%o A091367 def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
%o A091367 print(aupto(1433)) # _Michael S. Branicky_, Nov 23 2021
%Y A091367 Cf. A046704 (primes whose digits sum to a prime), A052034 (primes whose digits squared sum to a prime), A091366 (primes whose digits cubed sum to a prime).
%K A091367 base,nonn
%O A091367 1,1
%A A091367 _Chuck Seggelin_, Jan 03 2004