A091380 Largest quadratic "mixed" residue modulo the n-th prime (LQxR(p_n)).
1, 1, 3, 4, 9, 11, 14, 17, 18, 27, 28, 35, 38, 41, 42, 51, 57, 59, 65, 76, 81, 86, 92, 99, 100, 105, 107, 110, 124, 129, 134, 137, 147, 148, 155, 161, 162, 171, 177, 179, 184, 188, 195, 196, 209, 220, 225, 227, 230, 232, 234, 249, 254, 258, 267, 268, 275, 278, 281
Offset: 1
References
- H. Cohn, Advanced Number Theory, p. 19, Dover Publishing (1962)
Links
- Ferenc Adorjan, The sequence of largest quadratic residues modulo the primes
Programs
-
PARI
{/* Sequence of the largest "mixed" QR modulo the primes */ lqxr(to)=local(v=[1],k,r,q); for(i=2,to,k=prime(i)-1;r=prime(i)%4-2; while(kronecker(k, prime(i))<>r,k-=1); v=concat(v,k)); print(v) }
Formula
a(1)=1; a(n>1)=max{r
Comments