cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091383 Prime numbers where the sequence of largest quadratic "mixed" residues modulo the primes (A091380) is non-monotonic.

This page as a plain text file.
%I A091383 #7 Aug 27 2025 11:51:30
%S A091383 3,7,31,71,103,151,199,239,271,311,359,463,599,719,823,839,911,1063,
%T A091383 1231,1279,1303,1439,1559,1871,1879,1951,1999,2143,2239,2311,2351,
%U A091383 2383,2399,2551,2711,2791,3191,3391,3463,3559,3583,3823,3911,3919,4079,4159
%N A091383 Prime numbers where the sequence of largest quadratic "mixed" residues modulo the primes (A091380) is non-monotonic.
%C A091383 All of these primes belong to the +-1 least absolute reside classes modulo 8. (Tested for 10^5 primes.)
%C A091383 Where does this first differ from A088193 (if at all)? - _R. J. Mathar_, Aug 27 2025
%H A091383 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/qrp.pdf">The sequence of largest quadratic residues modulo the primes</a>
%o A091383 (PARI) {/* The primes where the sequence of the largest "mixed" QR modulo the primes is non-monotonic */ lqxr_nm_p(to)=local(v=[],k,r,q,p,e=1,n=0,i=1); while(n<to,i+=1;p=prime(i);k=p-1;r=p%4-2; while(kronecker(k,p)<>r,k-=1); if(k-e<=0,v=concat(v,p);n+=1);e=k); print(i);print(v) }
%Y A091383 Cf. A091380, A091381, A091382, A091384, A091385, A088190, A088193, A088199.
%K A091383 easy,nonn,changed
%O A091383 1,1
%A A091383 Ferenc Adorjan (fadorjan(AT)freemail.hu)