This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091383 #7 Aug 27 2025 11:51:30 %S A091383 3,7,31,71,103,151,199,239,271,311,359,463,599,719,823,839,911,1063, %T A091383 1231,1279,1303,1439,1559,1871,1879,1951,1999,2143,2239,2311,2351, %U A091383 2383,2399,2551,2711,2791,3191,3391,3463,3559,3583,3823,3911,3919,4079,4159 %N A091383 Prime numbers where the sequence of largest quadratic "mixed" residues modulo the primes (A091380) is non-monotonic. %C A091383 All of these primes belong to the +-1 least absolute reside classes modulo 8. (Tested for 10^5 primes.) %C A091383 Where does this first differ from A088193 (if at all)? - _R. J. Mathar_, Aug 27 2025 %H A091383 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/qrp.pdf">The sequence of largest quadratic residues modulo the primes</a> %o A091383 (PARI) {/* The primes where the sequence of the largest "mixed" QR modulo the primes is non-monotonic */ lqxr_nm_p(to)=local(v=[],k,r,q,p,e=1,n=0,i=1); while(n<to,i+=1;p=prime(i);k=p-1;r=p%4-2; while(kronecker(k,p)<>r,k-=1); if(k-e<=0,v=concat(v,p);n+=1);e=k); print(i);print(v) } %Y A091383 Cf. A091380, A091381, A091382, A091384, A091385, A088190, A088193, A088199. %K A091383 easy,nonn,changed %O A091383 1,1 %A A091383 Ferenc Adorjan (fadorjan(AT)freemail.hu)