cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091385 Distance (A091382) of primes from the largest quadratic "mixed" residues modulo the primes (A091380), where the latter is non-monotonic.

This page as a plain text file.
%I A091385 #5 Mar 14 2018 03:51:31
%S A091385 2,7,11,7,11,11,7,17,7,7,7,13,11,13,7,11,7,11,13,7,11,13,11,7,11,11,
%T A091385 13,7,7,11,13,19,11,17,11,7,7,7,13,13,17,11,11,17,11,13,19,11,13,11,7,
%U A091385 7,11,19,11,11,7,13,11,11,13,13,7,13,17,13,11,17,11,19,11,11,11,13,23,7,17,7
%N A091385 Distance (A091382) of primes from the largest quadratic "mixed" residues modulo the primes (A091380), where the latter is non-monotonic.
%C A091385 For n > 1, the values are some odd primes, but never < 7. The maximum value increases very slowly, it only reaches 43 for the first 10^5 primes.
%H A091385 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/qrp.pdf">The sequence of largest quadratic residues modulo the primes</a>
%o A091385 (PARI) {/* The distance of LQxR from the primes where the sequence of the largest "mixed" QR modulo the primes is non-monotonic */ lqxr_nm_pd(to)=local(v=[],k,r,q,p,e=1,n=0,i=1); while(n<to,i+=1;p=prime(i);k=p-1;r=p%4-2; while(kronecker(k,p)<>r,k-=1); if(k-e<=0,v=concat(v,p-k);n+=1);e=k); print(i);print(v) }
%Y A091385 Cf. A091380, A091381, A091382, A091383, A091384, A088195, A088201.
%K A091385 easy,nonn
%O A091385 1,1
%A A091385 Ferenc Adorjan (fadorjan(AT)freemail.hu)