This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091395 #15 Oct 17 2022 07:05:49 %S A091395 1,2,0,2,0,0,1,2,0,0,2,0,0,2,0,2,0,0,0,0,0,4,2,0,0,0,0,2,2,0,0,2,0,0, %T A091395 0,0,2,0,0,0,0,0,2,4,0,4,0,0,1,0,0,0,2,0,0,2,0,4,0,0,0,0,0,2,0,0,2,0, %U A091395 0,0,2,0,0,4,0,0,2,0,2,0,0,0,0,0,0,4,0,4,0,0,0,4,0,0,0,0,0,2,0,0,0,0,0,0,0 %N A091395 a(n) = Product_{ p | n } (1 + Legendre(-7,p) ). %H A091395 Andrew Howroyd, <a href="/A091395/b091395.txt">Table of n, a(n) for n = 1..1000</a> %F A091395 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 7*sqrt(7)/(8*Pi) = 0.736897... . - _Amiram Eldar_, Oct 17 2022 %p A091395 with(numtheory); L := proc(n,N) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul((1+legendre(N,t1[i][1])),i=1..nops(t1)); end; [seq(L(n,-7),n=1..120)]; %t A091395 a[n_] := Times@@ (1+KroneckerSymbol[-7, #]& /@ FactorInteger[n][[All, 1]]); %t A091395 Array[a, 105] (* _Jean-François Alcover_, Apr 08 2020 *) %o A091395 (PARI) a(n)={my(f=factor(n)[,1]); prod(i=1, #f, 1 + kronecker(-7, f[i]))} \\ _Andrew Howroyd_, Jul 23 2018 %Y A091395 Cf. A091379, A175629. %K A091395 nonn,mult %O A091395 1,2 %A A091395 _N. J. A. Sloane_, Mar 02 2004