This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091414 #11 Oct 24 2013 12:01:29 %S A091414 50,251,259,4097,570947,73310705,647282661,79327628290,1077347903894, %T A091414 1761813250036143,2343908545594901 %N A091414 Least number that is the sum of n positive n-th powers in at least 2 ways. %C A091414 From _Donovan Johnson_, Sep 14 2008: (Start) %C A091414 a(11) = 2^11 + 2^11 + 2^11 + 2^11 + 8^11 + 10^11 + 10^11 + 15^11 + 22^11 + 22^11 + 22^11 = 3^11 + 5^11 + 5^11 + 5^11 + 6^11 + 9^11 + 11^11 + 12^11 + 17^11 + 20^11 + 24^11. %C A091414 a(12) = 2^12 + 2^12 + 2^12 + 2^12 + 2^12 + 2^12 + 2^12 + 9^12 + 9^12 + 9^12 + 15^12 + 19^12 = 3^12 + 5^12 + 5^12 + 10^12 + 10^12 + 10^12 + 10^12 + 12^12 + 12^12 + 17^12 + 17^12 + 18^12. %C A091414 a(13) > 876*10^15. a(14) > 799*10^15. a(15) > 115*10^16. (End) %F A091414 a(n) <= A230477(n) for n > 1, with equality at least for n = 2 and inequality at least for n = 3, 4, 5. - _Jonathan Sondow_, Oct 24 2013 %e A091414 a(3) = 251 because 251 = 1^3 + 5^3 + 5^3 = 2^3 + 3^3 + 6^3 and it is the smallest number that can be represented two ways as the sum of three third powers. %Y A091414 a(2) = A048610(2), a(3) = A008917(1), a(4) = A185673(2). - _Jonathan Sondow_, Oct 24 2013 %Y A091414 Cf. A230561, A230477. %K A091414 more,nonn %O A091414 2,1 %A A091414 Gabriel Cunningham (gcasey(AT)mit.edu), Mar 02 2004 %E A091414 More terms from _David Wasserman_, Mar 09 2006 %E A091414 a(11)-a(12) from _Donovan Johnson_, Sep 14 2008 %E A091414 Definition shortened by _Jonathan Sondow_, Oct 24 2013