This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091449 #11 Nov 24 2024 09:25:41 %S A091449 1,2,4,3,5,9,41,6,10,16,7,130,8,17,25,13,14,269,11,26,36,19,29,23,370, %T A091449 12,37,49,58,21,53,28,458,15,50,64,31,73,22,74,32,697,18,65,81,106,44, %U A091449 202,45,85,33,986,20,82,100,43,113,69,250,52,89,34,1313,24,101,121 %N A091449 Array T(n,k) read by antidiagonals, where row n is the increasing sequence of numbers m for which the simple continued fraction of sqrt(m) has period n, n >= 0, k >= 1. %C A091449 A permutation of the positive integers. %e A091449 Array begins: %e A091449 n\k| 1 2 3 4 5 6 7 8 9 10 11 %e A091449 ---+------------------------------------------------ %e A091449 0 | 1 4 9 16 25 36 49 64 81 100 121 %e A091449 1 | 2 5 10 17 26 37 50 65 82 101 122 %e A091449 2 | 3 6 8 11 12 15 18 20 24 27 30 %e A091449 3 | 41 130 269 370 458 697 986 1313 1325 1613 1714 %e A091449 4 | 7 14 23 28 32 33 34 47 55 60 62 %e A091449 5 | 13 29 53 74 85 89 125 173 185 218 229 %e A091449 6 | 19 21 22 45 52 54 57 59 70 77 88 %e A091449 7 | 58 73 202 250 274 314 349 425 538 761 1010 %e A091449 8 | 31 44 69 71 91 92 108 135 153 158 160 %e A091449 9 | 106 113 137 149 265 389 493 610 698 754 970 %e A091449 10 | 43 67 86 93 115 116 118 129 154 159 161 %e A091449 The least n for which CF(sqrt(n)) has period of length 4 is n=7, with CF=[2;1,1,1,4,1,1,1,4,1,1,1,4,...]; thus T(4,1)=7. %e A091449 [The array T(n,k) is indexed by n=0,1,2,3,..., k=1,2,3... .] %e A091449 Row 0 consists of squares: 1,4,9,... %Y A091449 Cf. A002522, A003285, A013642, A091450, A091451, A091453. %Y A091449 Rows 0-100 are: A000290 (except the initial 0), A002522 (except the initial 1), A013642, A013643, A013644, A010337, A020347, A010338, A020348, A010339, A020349-A020439. %K A091449 nonn,tabl %O A091449 0,2 %A A091449 _Clark Kimberling_, Feb 03 2004 %E A091449 a(17) = T(3,3) corrected by _Pontus von Brömssen_, Nov 23 2024