cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091466 Table (by antidiagonals) of labeled alternating octopuses with n black nodes and k white nodes. Each type of object labeled from its own label set.

Original entry on oeis.org

1, 2, 2, 0, 14, 0, 0, 36, 36, 0, 0, 24, 336, 24, 0, 0, 0, 1296, 1296, 0, 0, 0, 0, 2160, 14832, 2160, 0, 0, 0, 0, 1440, 80640, 80640, 1440, 0, 0, 0, 0, 0, 233280, 1082880, 233280, 0, 0, 0, 0, 0, 0, 362880, 7776000, 7776000, 362880, 0, 0, 0, 0, 0, 0, 241920, 33264000
Offset: 1

Views

Author

Christian G. Bower, Jan 12 2004

Keywords

Examples

			1  2    0     0       0 ...
2  4   36    24       0 ...
0 36  336  1296    2160 ...
0 24 1296 14832   80640 ...
0  0 2160 80640 1082880 ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 113 (2.4.41).

Crossrefs

Formula

Double e.g.f.: A(x, y) = Sum_{i, j>=0} (x^i*y^j/(i!*j!)) = log((1-x*y)^2/(1-x*y*(3+x+y))).

A091468 Number of unlabeled alternating octopuses with n black nodes and n white nodes.

Original entry on oeis.org

1, 4, 10, 28, 76, 238, 736, 2428, 8110, 27754, 96196, 338158, 1200070, 4298578, 15511810, 56352508, 205906432, 756265486, 2790415564, 10338503578, 38446991530, 143461341082, 536962873540, 2015475400942, 7584636386326
Offset: 1

Views

Author

Christian G. Bower, Jan 12 2004

Keywords

Crossrefs

Main diagonal of A091467.

Formula

3*A003239(n) - 2 (conjectured). - Ralf Stephan, Feb 06 2004

A091469 Number of unlabeled alternating octopuses with n black nodes.

Original entry on oeis.org

2, 9, 26, 85, 274, 981, 3498, 13005, 48818, 186193, 716474, 2782657, 10878642, 42792797, 169181578, 671878845, 2678679362, 10716700257, 43007271770, 173072733629, 698235687858, 2823329921445, 11439823954666, 46440711992697
Offset: 1

Views

Author

Christian G. Bower, Jan 12 2004

Keywords

Crossrefs

Row sums of A091467.

Formula

G.f.: A(x) = Sum_{k>=1} (phi(k)/k)*log((1-7*x^n+2*x^(2*n))/(1-x^n)^2).
CIK transform of A016825(n+1) i.e. b(n)=4n-2.
Showing 1-3 of 3 results.