cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091481 Number of labeled rooted 2,3 cacti (triangular cacti with bridges).

This page as a plain text file.
%I A091481 #33 Aug 25 2024 20:55:53
%S A091481 1,2,12,112,1450,23976,482944,11472896,314061948,9734500000,
%T A091481 336998573296,12888244482048,539640296743288,24552709165722752,
%U A091481 1206192446775000000,63633506348182798336,3587991568046845781776,215334327830586721473024,13705101790650454900938688
%N A091481 Number of labeled rooted 2,3 cacti (triangular cacti with bridges).
%C A091481 Also labeled involution rooted trees.
%D A091481 F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.84).
%H A091481 Maryam Bahrani and Jérémie Lumbroso, <a href="http://arxiv.org/abs/1608.01465">Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition</a>, arXiv:1608.01465 [math.CO], 2016.
%H A091481 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>
%H A091481 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A091481 E.g.f. A(x) satisfies A(x) = x*exp(A(x)+A(x)^2/2).
%F A091481 a(n) = i^(n-1)*n^((n-1)/2)*He_{n-1}(-sqrt(-n)), i=sqrt(-1), He_k unitary Hermite polynomial (cf. A066325).
%F A091481 a(n) = Sum_{k = ceiling((n-1)/2)...n-1} (n-1)!/((n-k-1)!*(2*k-n+1)!)*n^k*2^(-n+k+1). - _Vladimir Kruchinin_, Aug 07 2012
%F A091481 a(n) ~ 2^(n+1/2) * n^(n-1) * exp((sqrt(5)-3)*n/4) / (sqrt(5+sqrt(5)) * (sqrt(5)-1)^n). - _Vaclav Kotesovec_, Jan 08 2014
%t A091481 Rest[CoefficientList[InverseSeries[Series[x/E^(x*(2+x)/2),{x,0,20}],x],x] * Range[0,20]!] (* _Vaclav Kotesovec_, Jan 08 2014 *)
%o A091481 (Maxima) a(n):=sum(((n-1)!/((n-k-1)!*(2*k-n+1)!)*n^k*2^(-n+k+1)),k,ceiling((n-1)/2),n-1); /* _Vladimir Kruchinin_, Aug 07 2012 */
%o A091481 (PARI) x='x+O('x^66);
%o A091481 Vec(serlaplace(serreverse(x/exp(x^2/2+x)))) /* _Joerg Arndt_, Jan 25 2013 */
%Y A091481 a(n) = A091485(n)*n. Cf. A032035, A066325, A091486.
%K A091481 nonn,eigen
%O A091481 1,2
%A A091481 _Christian G. Bower_, Jan 13 2004