cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091486 Number of unlabeled rooted 2,3 cacti (triangular cacti with bridges).

This page as a plain text file.
%I A091486 #22 Aug 30 2018 18:55:14
%S A091486 1,1,3,7,21,60,190,600,1977,6589,22408,77050,268178,941599,3333585,
%T A091486 11882427,42615480,153653039,556664752,2025330509,7397242875,
%U A091486 27111563026,99681629658,367563272278,1358945378906,5036549490009,18708739990129,69640873691941
%N A091486 Number of unlabeled rooted 2,3 cacti (triangular cacti with bridges).
%C A091486 Also number of unlabeled involution rooted trees.
%H A091486 Alois P. Heinz, <a href="/A091486/b091486.txt">Table of n, a(n) for n = 1..1000</a>
%H A091486 Maryam Bahrani and Jérémie Lumbroso, <a href="http://arxiv.org/abs/1608.01465">Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition</a>, arXiv:1608.01465 [math.CO], 2016.
%H A091486 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A091486 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>
%H A091486 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A091486 Shifts left under transform T where Ta = EULER(E_1, 2(a)). E_1, 2(a) has g.f. A(x)+(A(x^2)+A(x)^2)/2.
%o A091486 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o A091486 seq(n)={my(p=O(x)); for(n=1, n, p=x+x^2*(Ser(EulerT(Vec(p + (p^2 + subst(p,x,x^2))/2))))); Vec(p)} \\ _Andrew Howroyd_, Aug 30 2018
%Y A091486 Cf. A091487, A091488.
%K A091486 nonn,eigen
%O A091486 1,3
%A A091486 _Christian G. Bower_, Jan 14 2004