cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091488 Number of asymmetric rooted 2,3 cacti (triangular cacti with bridges).

This page as a plain text file.
%I A091488 #12 Aug 30 2018 18:56:44
%S A091488 1,1,1,3,6,16,42,115,319,909,2614,7622,22422,66556,198946,598617,
%T A091488 1811205,5508015,16825307,51605568,158860950,490666293,1520106655,
%U A091488 4722502437,14708971581,45921804883,143682973435,450477673623
%N A091488 Number of asymmetric rooted 2,3 cacti (triangular cacti with bridges).
%C A091488 Also asymmetric involution rooted trees.
%H A091488 Andrew Howroyd, <a href="/A091488/b091488.txt">Table of n, a(n) for n = 1..500</a>
%H A091488 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A091488 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>
%H A091488 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A091488 Shifts left under transform T where Ta = WEIGH(W_1, 2(a)). W_1, 2(a) has g.f. A(x)+(A(x^2)-A(x)^2)/2.
%o A091488 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
%o A091488 seq(n)={my(p=O(x)); for(n=1, n, p=x+x^2*(Ser(WeighT(Vec(p + (p^2 - subst(p,x,x^2))/2))))); Vec(p)} \\ _Andrew Howroyd_, Aug 30 2018
%Y A091488 Cf. A091486, A091489.
%K A091488 nonn,eigen
%O A091488 1,4
%A A091488 _Christian G. Bower_, Jan 14 2004