cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091492 Triangle, read by rows, generated recursively and related to partitions.

This page as a plain text file.
%I A091492 #7 Jun 13 2017 21:51:27
%S A091492 1,1,1,1,1,0,1,1,1,0,1,1,1,0,0,1,1,2,0,0,0,1,1,2,1,0,0,0,1,1,3,1,0,0,
%T A091492 0,0,1,1,3,2,0,0,0,0,0,1,1,4,3,0,0,0,0,0,0,1,1,4,4,1,0,0,0,0,0,0,1,1,
%U A091492 5,5,1,1,0,0,0,0,0,0,1,1,5,7,2,1,0,0,0,0,0,0,0,1,1,6,8,3,2,0,0,0,0,0,0,0,0
%N A091492 Triangle, read by rows, generated recursively and related to partitions.
%C A091492 Excluding the leading zeros, the columns are related to partitions. The 3rd column lists A001399 (partitions of n into at most 3 parts). The 4th column lists A001400 (partitions of n into at most 4 parts). The 5th column lists A001401 (partitions of n into at most 5 parts). The 6th column is A091498. Row sums are A091493. The number of nonzero terms in each row is A091497.
%F A091492 T(n, k)=Sum T(n-k, j)*T(j, k-j) {j=[(k+1)/2]..min(k, n-k)}, with T(0, 0)=1, T(n, 0)=1, T(1, 1)=1.
%e A091492 T(12,3) = 7 = (4)*1+(3)*1 = T(9,2)*T(2,1)+T(9,3)*T(3,0) = Sum T(9,j)*T(j,3-j) {j=2..3}.
%e A091492 Rows begin:
%e A091492 {1},
%e A091492 {1,1},
%e A091492 {1,1,0},
%e A091492 {1,1,1,0},
%e A091492 {1,1,1,0,0},
%e A091492 {1,1,2,0,0,0},
%e A091492 {1,1,2,1,0,0,0},
%e A091492 {1,1,3,1,0,0,0,0},
%e A091492 {1,1,3,2,0,0,0,0,0},
%e A091492 {1,1,4,3,0,0,0,0,0,0},
%e A091492 {1,1,4,4,1,0,0,0,0,0,0},
%e A091492 {1,1,5,5,1,1,0,0,0,0,0,0},
%e A091492 {1,1,5,7,2,1,0,0,0,0,0,0,0},
%e A091492 {1,1,6,8,3,2,0,0,0,0,0,0,0,0},
%e A091492 {1,1,6,10,5,3,0,0,0,0,0,...
%e A091492 {1,1,7,12,6,5,0,0,0,0,0,...
%e A091492 {1,1,7,14,9,7,1,0,0,0,0,...
%e A091492 {1,1,8,16,11,10,2,0,0,0,...
%e A091492 {1,1,8,19,15,13,3,2,0,0,...
%e A091492 {1,1,9,21,18,18,5,2,0,0,...
%e A091492 {1,1,9,24,23,23,8,4,0,0,...
%e A091492 {1,1,10,27,27,30,11,6,0,...
%e A091492 {1,1,10,30,34,37,17,10,0,...
%o A091492 (PARI) T(n,k)=if(k>n || n<0 || k<0,0,if(k<=1 || (k==n && n<2),1, sum(j=(k+1)\2,min(n-k,k),T(n-k,j)*T(j,k-j)););)
%Y A091492 Cf. A001399, A001400, A001401, A091493, A091497, A091498.
%K A091492 nonn,tabl
%O A091492 0,18
%A A091492 _Paul D. Hanna_, Jan 16 2004